Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002217

RESUMEN

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Reproducibilidad de los Resultados , Plantas
2.
Integr Zool ; 17(4): 619-637, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34496145

RESUMEN

Physiological performance in lizards may be affected by climate across latitudinal or altitudinal gradients. In the coastal dune barriers in central-eastern Argentina, the annual maximum environmental temperature decreases up to 2°C from low to high latitudes, while the mean relative humidity of the air decreases from 50% to 25%. Liolaemus multimaculatus, a lizard in the family Liolaemidae, is restricted to these coastal dunes. We investigated the locomotor performance of the species at 6 different sites distributed throughout its range in these dune barriers. We inquired whether locomotor performance metrics were sensitive to the thermal regime attributable to latitude. The thermal performance breadth increased from 7% to 82% with latitude, due to a decrease in its critical thermal minimum of up to 5°C at higher latitudes. Lizards from high latitude sites showed a thermal optimum, that is, the body temperature at which maximum speed is achieved, up to 4°C lower than that of lizards from the low latitude. At relatively low temperatures, the maximum running speed of high-latitude individuals was faster than that of low-latitude ones. Thermal parameters of locomotor performance were labile, decreasing as a function of latitude. These results show populations of L. multimaculatus adjust thermal physiology to cope with local climatic variations. This suggests that thermal sensitivity responds to the magnitude of latitudinal fluctuations in environmental temperature.


Asunto(s)
Lagartos , Carrera , Animales , Regulación de la Temperatura Corporal/fisiología , Frío , Lagartos/fisiología , Carrera/fisiología , Temperatura
3.
J Therm Biol ; 88: 102485, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125975

RESUMEN

Thermoregulation in ectotherms may be modulated by climatic variability across geographic gradients. Environmental temperature varies along latitudinal clines resulting in heterogeneous thermal resource availability, which generally induces ectotherms to use compensatory mechanisms to thermoregulate. Lizards can accommodate to ambient temperature changes through a combination of adaptive evolution and behavioral and physiological plasticity. We studied the thermal ecology of the endangered endemic lizard Liolaemus multimaculatus at six different sites distributed from the northern to southern areas of the distribution (700 km) in the Atlantic dune barriers of Argentina, and even including the borders areas of the distribution range. Environmental temperatures and relative humidity showed a strong contrast between northern and southern limits of the distribution range. The northern localities had operative temperatures (Te) above the range of preferred temperatures (Tset), instead, the southern localities had large proportion of Tes within the Tset. Although these different climatic conditions may constrain the thermal biology of L. multimaculatus, individuals from all localities maintained relatively similar field body temperatures (XTb = 34.07 ± 3.02 °C), suggesting that this parameter is conservative. Thermal preference partially reflected latitudinal temperature gradient, since lizards from the two southernmost localities showed the lowest Tsel and Tset. Thermoregulatory efficiency differed among localities, since E values in the northern localities (E = 0.53-0.69) showed less variability than those of southern localities (E = 0.14-0.67). Although L. multimaculatus employed a strategy of having a conservative Tb and being able to acclimatize the thermal preference to copes with latitudinal changes in the thermal environment, other local factors, such as ecological interactions, may also impose limitations to thermoregulation and this may interfered in the interpretation of results at wider spatial scale.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos/fisiología , Microclima , Animales , Argentina , Geografía , Humedad , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...