Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 386(2): 461-72, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24360906

RESUMEN

Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Cresta Neural/embriología , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Hibridación in Situ , Análisis por Micromatrices , Factor de Transcripción PAX3 , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis/genética
2.
Proc Natl Acad Sci U S A ; 110(14): 5528-33, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509273

RESUMEN

Defining which key factors control commitment of an embryonic lineage among a myriad of candidates is a longstanding challenge in developmental biology and an essential prerequisite for developing stem cell-based therapies. Commitment implies that the induced cells not only express early lineage markers but further undergo an autonomous differentiation into the lineage. The embryonic neural crest generates a highly diverse array of derivatives, including melanocytes, neurons, glia, cartilage, mesenchyme, and bone. A complex gene regulatory network has recently classified genes involved in the many steps of neural crest induction, specification, migration, and differentiation. However, which factor or combination of factors is sufficient to trigger full commitment of this multipotent lineage remains unknown. Here, we show that, in contrast to other potential combinations of candidate factors, coactivating transcription factors Pax3 and Zic1 not only initiate neural crest specification from various early embryonic lineages in Xenopus and chicken embryos but also trigger full neural crest determination. These two factors are sufficient to drive migration and differentiation of several neural crest derivatives in minimal culture conditions in vitro or ectopic locations in vivo. After transplantation, the induced cells migrate to and integrate into normal neural crest craniofacial target territories, indicating an efficient spatial recognition in vivo. Thus, Pax3 and Zic1 cooperate and execute a transcriptional switch sufficient to activate full multipotent neural crest development and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Cresta Neural/embriología , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Análisis de Varianza , Animales , Linaje de la Célula/fisiología , Embrión de Pollo , Cartilla de ADN/genética , Electroporación , Redes Reguladoras de Genes/genética , Inmunohistoquímica , Hibridación in Situ , Microscopía por Video , Cresta Neural/citología , Factor de Transcripción PAX3 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Dev Biol ; 333(1): 26-36, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19555680

RESUMEN

The organization of the embryonic neural plate requires coordination of multiple signal transduction pathways, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and WNTs. Many studies have suggested that a critical component of this process is the patterning of posterior neural tissues by an FGF-caudal signaling cascade. Here, we have identified a novel player, Dazap2, and show that it is required in vivo for posterior neural fate. Loss of Dazap2 in embryos resulted in diminished expression of hoxb9 with a concurrent increase in the anterior marker otx2. Furthermore, we found that Dazap2 is required for FGF dependent posterior patterning; surprisingly, this is independent of Cdx activity. Furthermore, in contrast to FGF activity, Dazap2 induction of hoxb9 is not blocked by loss of canonical Wnt signaling. Functionally, we found that increasing Dazap2 levels alters neural patterning and induces posterior neural markers. This activity overcomes the anteriorizing effects of noggin, and is downstream of FGF receptor activation. Our results strongly suggest that Dazap2 is a novel and essential branch of FGF-induced neural patterning.


Asunto(s)
Proteínas Fetales/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Sistema Nervioso/embriología , Proteínas Wnt/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA