Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
PLoS One ; 19(5): e0302867, 2024.
Article En | MEDLINE | ID: mdl-38743754

Despite evidence on trunk flexion's impact on locomotion mechanics, its role in modulating lower-limb energetics during perturbed running remains underexplored. Therefore, we investigated posture-induced power redistribution in the lower-limb joints (hip, knee, and ankle), along with the relative contribution from each joint to total lower-limb average positive and negative mechanical powers (i.e., over time) during perturbed running. Twelve runners (50% female) ran at self-selected (~15°) and three more sagittal trunk inclinations (backward, ~0°; low forward, ~20°; high forward, ~25°) on a custom-built runway, incorporating both a level surface and a 10 cm visible drop-step positioned midway, while simultaneously recording three-dimensional kinematics and kinetics. We used inverse dynamics analysis to determine moments and powers in lower-limb joints. Increasing the trunk forward inclination yielded the following changes in lower-limb mechanics: a) an elevation in total positive power with a distoproximal shift and a reduction in total negative power; b) systematic increases in hip positive power, coupled with decreased and increased contribution to total negative (during level-step) and positive (during drop-step) powers, respectively; c) reductions in both negative and positive knee powers, along with a decrease in its contribution to total positive power. Regardless of the trunk posture, accommodating drop-steps while running demands elevated total limb negative and positive powers with the ankle as a primary source of energy absorption and generation. Leaning the trunk more forward induces a distoproximal shift in positive power, whereas leaning backward exerts an opposing influence on negative power within the lower-limb joints.


Ankle Joint , Knee Joint , Lower Extremity , Posture , Running , Humans , Running/physiology , Female , Male , Posture/physiology , Biomechanical Phenomena , Adult , Ankle Joint/physiology , Knee Joint/physiology , Lower Extremity/physiology , Hip Joint/physiology , Young Adult
3.
J R Soc Interface ; 19(197): 20220642, 2022 12.
Article En | MEDLINE | ID: mdl-36475390

How myofilaments operate at short mammalian skeletal muscle lengths is unknown. A common assumption is that thick (myosin-containing) filaments get compressed at the Z-disc. We provide ultrastructural evidence of sarcomeres contracting down to 0.44 µm-approximately a quarter of thick filament resting length-in long-lasting contractions while apparently keeping a regular, parallel thick filament arrangement. Sarcomeres produced force at such extremely short lengths. Furthermore, sarcomeres adopted a bimodal length distribution with both modes below lengths where sarcomeres are expected to generate force in classic force-length measurements. Mammalian fibres did not restore resting length but remained short after deactivation, as previously reported for amphibian fibres, and showed increased forces during passive re-elongation. These findings are incompatible with viscoelastic thick filament compression but agree with predictions of a model incorporating thick filament sliding through the Z-disc. This more coherent picture of mechanical mammalian skeletal fibre functioning opens new perspectives on muscle physiology.

4.
J Appl Physiol (1985) ; 133(1): 223-233, 2022 07 01.
Article En | MEDLINE | ID: mdl-35652830

Ecccentric muscle contractions are fundamental to everyday life. They occur markedly in jumping, running, and accidents. Following an initial force rise, stretching of a fully activated muscle can result in a phase of decreasing force ("Give") followed by force redevelopment. However, how the stretch velocity affects "Give" and force redevelopment remains largely unknown. We investigated the force produced by fully activated single-skinned fibers of rat extensor digitorum longus muscles during long stretches. Fibers were pulled from length 0.85 to 1.3 optimal fiber length at a rate of 1%, 10%, and 100% of the estimated maximum shortening velocity. "Give" was absent in slow stretches. Medium and fast stretches yielded a clear "Give." After the initial force peak, forces decreased by 11.2% and 27.8% relative to the initial peak force before rising again. During the last half of the stretch (from 1.07 to 1.3 optimal fiber length, which is within the range of the expected descending limb of the force-length relationship), the linear force slope tripled from slow to medium stretch and increased further by 60% from medium to fast stretch. These results are compatible with forcible cross-bridge detachment and redevelopment of a cross-bridge distribution, and a viscoelastic titin contribution to fiber force. Accounting for these results can improve muscle models and predictions of multibody simulations.NEW & NOTEWORTHY Eccentric muscle contractions are part of our daily lives. We found that force increased monotonically during slow stretches of fully activated muscle fibers, whereas higher stretch velocities resulted in an increasing drop in force after an initial increase and a final steeper rise in force. Cross-bridges cannot explain the observed force traces. This requires a viscoelastic non-cross-bridge contribution. Considering these results can improve muscle models and predictions of multibody simulations.


Muscle Contraction , Muscle Fibers, Skeletal , Animals , Mechanical Phenomena , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Rats
5.
Eur J Sport Sci ; 22(8): 1188-1195, 2022 Aug.
Article En | MEDLINE | ID: mdl-34077302

This study aimed to investigate the role of trunk posture in running locomotion. Twelve recreational runners ran in the laboratory across even and uneven ground surface (expected 10 cm drop-step) with three trunk-lean angles from the vertical (self-selected, ∼15°; anterior, ∼25°; posterior, ∼0°) while 3D kinematic and kinetic data were collected using a 3D motion-capture-system and two embedded force-plates. Two-way repeated measures ANOVAs (α = 0.05) compared lower-limb joint mechanics (angles, moments, energy absorption and generation) and ground-reaction-force parameters (braking and propulsive impulse) between Step (level and drop) and Posture conditions. The Step-by-Posture interaction revealed decreased hip energy generation, and greater peak knee extension moment in the drop-step during running with posterior versus anterior trunk-lean. Furthermore, energy absorption across hip and ankle nearly doubled in the drop-step across all running conditions. The Step main effect revealed that the knee and ankle energy absorption, ankle energy generation, ground-reaction-force, and braking impulse significantly increased in the drop-step. The Posture main effect revealed that, compared with a self-selected trunk-lean, the knee's energy absorption/generation, ankle's energy generation and the braking impulse were either retained or attenuated when leaning the trunk anteriorly. The opposite effects occurred with a posterior trunk-lean. In conclusion, while the pronounced mechanical ankle stress in drop-steps is marginally affected by posture, changing the trunk-lean reorganizes the load distribution across the knee and hip joints. Leaning the trunk anteriorly in running shifts loading from the knee to the hip not only in level running but also when coping with ground-level changes.HighlightsChanging the trunk-lean when running reorganizes the load distribution across the knee and hip joints.Leaning the trunk anteriorly from a habitual trunk posture during running attenuates the mechanical stress on the knee, while the opposite effect occurs with a posterior trunk-lean, irrespective to the ground surface uniformity.The effect of posture on pronounced mechanical ankle stress in small perturbation height during running is marginal.Leaning the trunk anteriorly shifts loading from the knee to the hip not only in level running but also when coping with small perturbation height.


Lower Extremity , Torso , Ankle Joint , Biomechanical Phenomena , Hip Joint , Humans , Knee , Knee Joint
6.
Res Vet Sci ; 140: 69-78, 2021 Nov.
Article En | MEDLINE | ID: mdl-34411999

Maneuverability is of paramount importance for many animals, e.g., in predator-prey interactions. Despite this fact, quadrupedal limb behavior in complicated maneuvers like simultaneous jumping and turning are not well studied. Twenty adult sport Border Collies were recorded while jumping over an obstacle and simultaneously turning. Kinetic and kinematic data were captured in synchrony using eight force plates and sixteen infrared cameras. These dogs were familiar with the task through regular participation in the dog sport agility. The experiments revealed that during landing, higher lateral forces acting in the forelimbs compared to hindlimbs. During landing, the outer limbs produced about twice the inner limbs' force in both vertical and lateral directions, showing their dominant contribution to turning. Advanced dogs showed significantly higher lateral impulse and stronger inner-outer limb asymmetry regarding lateral impulses than beginner dogs, leading to significantly stronger turning for advanced dogs. Somewhat unexpected, skill effects rarely explained global limb dynamics, indicating that landing a turn jump is a constrained motion. Constrained motions leave little space for individual techniques suggesting that the results can be generalized to quadrupedal turn jumps in other animals.


Forelimb , Sports , Animals , Biomechanical Phenomena , Dogs , Hindlimb , Kinetics
7.
J Theor Biol ; 494: 110227, 2020 06 07.
Article En | MEDLINE | ID: mdl-32142807

Animals typically switch from grounded (no flight phases) to aerial running at dimensionless speeds u^ < 1. But some birds use grounded running far above u^ = 1, which puzzles biologists because the inverted pendulum becomes airborne at this speed. Here, we combine computer experiments using the spring-mass model with locomotion data from small birds, macaques and humans to understand the relationship between leg function (stiffness, angle of attack), locomotion speed and gait. With our model, we found three-humped ground reaction force profiles for slow grounded running speeds. The minimal single-humped grounded running speed is u^ = 0.4. This speed value roughly coincides with the transition speed from vaulting to bouncing mechanics in bipeds. Maximal grounded running speed in the model is not limited. In experiments, animals changed from grounded to aerial running at dimensionless contact time around 1. Considering these real-world contact times reduces the solution space drastically, but experimental data fit well. The model still predicts maximal grounded running speed  u^ > 1 for low stiffness values used by birds but decreases below u^ = 1 for increasing stiffness. For stiffer legs used in human walking and running, periodic grounded running vanishes. At speeds at which birds and macaques change to aerial running, we found periodic aerial running to intersect grounded running. This could explain why animals can alternate between grounded and aerial running at the same speed and identical leg parameters. Compliant legs enable different gaits and speeds with similar leg parameters, stiff legs require parameter adaptations.


Birds , Models, Biological , Running , Animals , Biomechanical Phenomena , Birds/physiology , Flight, Animal , Gait , Humans , Locomotion , Macaca/physiology , Walking
8.
J Biomech ; 103: 109694, 2020 04 16.
Article En | MEDLINE | ID: mdl-32147241

Muscle architecture parameters change when the muscle changes in length. This has multiple effects on the function of the muscle, e.g. on force production and on contraction velocity. Here we present a versatile geometrical model that predicts changes in muscle architecture as a consequence of length changes of the muscle on the basis of the known architecture at a given muscle length. The model accounts for small changes in aponeuroses' dimensions relative to changes in fascicle length and keeps muscle volume constant. We evaluate the model on the rabbit soleus muscle by comparing model predictions of fascicle lengths and pennation angles with experimental data. For this, we determined the internal architecture of the soleus muscle at different muscle belly lengths (67.8 mm at 35° ankle angle and 59.3 mm at 80° ankle angle). The long and the short soleus muscle exhibited mean fascicle lengths and pennation angles of 20.8 ± 1.3 mm, 4 ± 2° and 13.5 ± 1 mm, 10 ± 4°, respectively. The model predicted reasonable mean fascicle lengths and pennation angles for the long and short soleus that differed only by 1 mm and 1° from the measured data, respectively. Differences between predicted and measured distributions seem to stem from interindividual variability in muscle architecture. Even if the proposed approach has been used for the soleus muscle, which is relatively simple in architecture, it is not restricted to homogeneous unipennate architectures.


Models, Biological , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Animals , Rabbits
9.
J Exp Biol ; 223(Pt 7)2020 04 01.
Article En | MEDLINE | ID: mdl-32098886

A considerable body of work has examined the dynamics of different dog gaits, but there are no studies that have focused on limb dynamics in jumping. Jumping is an essential part of dog agility, a dog sport in which handlers direct their dogs through an obstacle course in a limited time. We hypothesized that limb parameters like limb length and stiffness indicate the skill level of dogs. We analyzed global limb parameters in jumping for 10 advanced and 10 beginner dogs. In experiments, we collected 3D kinematics and ground reaction forces during dog jumping at high forward speeds. Our results revealed general strategies of limb control in jumping and highlighted differences between advanced and beginner dogs. In take-off, the spatially leading forelimb was 75% (P<0.001) stiffer than the trailing forelimb. In landing, the trailing forelimb was 14% stiffer (P<0.001) than the leading forelimb. This indicates a strut-like action of the forelimbs to achieve jumping height in take-off and to transfer vertical velocity into horizontal velocity in landing (with switching roles of the forelimbs). During landing, the more (24%) compliant forelimbs of beginner dogs (P=0.005) resulted in 17% (P=0.017) higher limb compression during the stance phase. This was associated with a larger amount of eccentric muscle contraction, which might in turn explain the soft tissue injuries that frequently occur in the shoulder region of beginner dogs. For all limbs, limb length at toe-off was greater for advanced dogs. Hence, limb length and stiffness might be used as objective measures of skill.


Forelimb , Sports , Animals , Biomechanical Phenomena , Dogs , Gait , Hindlimb , Locomotion , Upper Extremity
10.
Sci Rep ; 9(1): 14492, 2019 10 10.
Article En | MEDLINE | ID: mdl-31601860

Balancing the upper body is pivotal for upright and efficient gait. While models have identified potentially useful characteristics of biarticular thigh muscles for postural control of the upper body, experimental evidence for their specific role is lacking. Based on theoretical findings, we hypothesised that biarticular muscle activity would increase strongly in response to upper-body perturbations. To test this hypothesis, we used a novel Angular Momentum Perturbator (AMP) that, in contrast to existing methods, perturbs the upper-body posture with only minimal effect on Centre of Mass (CoM) excursions. The impulse-like AMP torques applied to the trunk of subjects resulted in upper-body pitch deflections of up to 17° with only small CoM excursions below 2 cm. Biarticular thigh muscles (biceps femoris long head and rectus femoris) showed the strongest increase in muscular activity (mid- and long-latency reflexes, starting 100 ms after perturbation onset) of all eight measured leg muscles which highlights the importance of biarticular muscles for restoring upper-body balance. These insights could be used for improving technological aids like rehabilitation or assistive devices, and the effectiveness of physical training for fall prevention e.g. for elderly people.


Muscle Contraction/physiology , Muscle, Skeletal/physiology , Posture/physiology , Standing Position , Adult , Bioengineering , Electromyography , Female , Gait/physiology , Humans , Leg/physiology , Male , Middle Aged , Postural Balance/physiology , Proprioception/physiology , Thigh/physiology , Torque
11.
Biomimetics (Basel) ; 4(1)2019 Jan 25.
Article En | MEDLINE | ID: mdl-31105196

Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular moment arm analysis that must be considered when calculating joint torque. Moment arm profiles from isolated muscle motions are compared to two existing models. The dependence of biarticular muscle's moment arms on the configuration of the adjacent joint is a critical aspect of moment arm analysis that must be considered when calculating joint torque. The variability in moment arm profiles suggests changes in muscle function during a step.

12.
J Biomech ; 66: 57-62, 2018 01 03.
Article En | MEDLINE | ID: mdl-29154088

Recent studies demonstrated that uniaxial transverse loading (FG) of a rat gastrocnemius medialis muscle resulted in a considerable reduction of maximum isometric muscle force (ΔFim). A hill-type muscle model assuming an identical gearing G between both ΔFim and FG as well as lifting height of the load (Δh) and longitudinal muscle shortening (ΔlCC) reproduced experimental data for a single load. Here we tested if this model is able to reproduce experimental changes in ΔFim and Δh for increasing transverse loads (0.64 N, 1.13 N, 1.62 N, 2.11 N, 2.60 N). Three different gearing ratios were tested: (I) constant Gc representing the idea of a muscle specific gearing parameter (e.g. predefined by the muscle geometry), (II) Gexp determined in experiments with varying transverse load, and (III) Gf that reproduced experimental ΔFim for each transverse load. Simulations using Gc overestimated ΔFim (up to 59%) and Δh (up to 136%) for increasing load. Although the model assumption (equal G for forces and length changes) held for the three lower loads using Gexp and Gf, simulations resulted in underestimation of ΔFim by 38% and overestimation of Δh by 58% for the largest load, respectively. To simultaneously reproduce experimental ΔFim and Δh for the two larger loads, it was necessary to reduce Fim by 1.9% and 4.6%, respectively. The model seems applicable to account for effects of muscle deformation within a range of transverse loading when using a linear load-dependent function for G.


Isometric Contraction , Models, Biological , Muscle, Skeletal/physiology , Animals , Muscle Contraction , Rats
13.
PLoS One ; 12(12): e0190135, 2017.
Article En | MEDLINE | ID: mdl-29281712

Though the effects of imposed trunk posture on human walking have been studied, less is known about such locomotion while accommodating changes in ground level. For twelve able participants, we analyzed kinematic parameters mainly at touchdown and toe-off in walking across a 10-cm visible drop in ground level (level step, pre-perturbation step, step-down, step-up) with three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). Two-way repeated measures ANOVAs revealed step-specific effects of posture on the kinematic behavior of gait mostly at toe-off of the pre-perturbation step and the step-down as well as at touchdown of the step-up. In preparation to step-down, with increasing trunk flexion the discrepancy in hip-center of pressure distance, i.e. effective leg length, (shorter at toe-off versus touchdown), compared with level steps increased largely due to a greater knee flexion at toe-off. Participants rotated their trunk backwards during step-down (2- to 3-fold backwards rotation compared with level steps regardless of trunk posture) likely to control the angular momentum of their whole body. The more pronounced trunk backwards rotation in trunk-flexed walking contributed to the observed elevated center of mass (CoM) trajectories during the step-down which may have facilitated drop negotiation. Able-bodied individuals were found to recover almost all assessed kinematic parameters comprising the vertical position of the CoM, effective leg length and angle as well as hip, knee and ankle joint angles at the end of the step-up, suggesting an adaptive capacity and hence a robustness of human walking with respect to imposed trunk orientations. Our findings may provide clinicians with insight into a kinematic interaction between posture and locomotion in uneven ground. Moreover, a backward rotation of the trunk for negotiating step-down may be incorporated into exercise-based interventions to enhance gait stability in individuals who exhibit trunk-flexed postures during walking.


Gait , Posture , Adult , Analysis of Variance , Female , Humans , Male , Young Adult
14.
Proc Math Phys Eng Sci ; 473(2207): 20170404, 2017 Nov.
Article En | MEDLINE | ID: mdl-29225495

Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.

15.
PLoS Comput Biol ; 13(10): e1005773, 2017 Oct.
Article En | MEDLINE | ID: mdl-28968385

Contractions on the descending limb of the total (active + passive) muscle force-length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere-length inhomogeneities. This is however not observed in experiments-vast half-sarcomere-length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere-length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin-titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force-length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided.


Actins/metabolism , Biomechanical Phenomena/physiology , Connectin/metabolism , Models, Biological , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Computational Biology , Humans
16.
Biol Open ; 6(7): 1000-1007, 2017 Jul 15.
Article En | MEDLINE | ID: mdl-28559427

Studies of disturbed human locomotion often focus on the dynamics of the gait when either posture, movement or surface is perturbed. Yet, the interaction effects of variation of trunk posture and ground level on kinetic behaviour of able-bodied gait have not been explored. For 12 participants we investigated the kinetic behaviour, as well as velocity and contact time, across four steps including an unperturbed step on level ground, pre-perturbation, perturbation (10-cm drop) and post-perturbation steps while walking with normal speed with four postures: regular erect, with 30°, 50° and maximal sagittal trunk flexion (70°). Two-way repeated measures ANOVAs detected significant interactions of posture×step for the second peak of the vertical ground reaction force (GRF), propulsive impulse, contact time and velocity. An increased trunk flexion was associated with a systematic decrease of the second GRF peak during all steps and with a decreased contact time and an increased velocity across steps, except for the perturbation step. Pre-adaptations were more pronounced in the approach step to the drop in regular erect gait. With increased trunk flexion, walking on uneven ground exhibited reduced changes in GRF kinetic parameters relative to upright walking. It seems that in trunk-flexed gaits the trunk is used in a compensatory way during the step-down to accommodate changes in ground level by adjusting its angle leading to lower variations in centre of mass height. Exploitation of this mechanism resembles the ability of small birds in adjusting their zig-zag-like configured legs to cope with changes in ground level.

17.
Proc Biol Sci ; 284(1854)2017 May 17.
Article En | MEDLINE | ID: mdl-28469023

In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokinetic stretches, and in which proportion cross-bridges and non-cross-bridges contribute to muscle force. Here, we show that maximally activated single skinned rat muscle fibres behave (almost across the entire working range) like linear springs. The force slope is about three times the maximum isometric force per optimal length. Cross-bridge and non-cross-bridge contributions to the muscle force were investigated using an actomyosin inhibitor. The experiments revealed a nonlinear progressive contribution of non-cross-bridge forces and suggest a nonlinear cross-bridge contribution similar to the active force-length relationship (though with increased optimal length and maximum isometric force). The linear muscle behaviour might significantly reduce the control effort. Moreover, the observed slight increase in slope with initial length is in accordance with current models attributing the non-cross-bridge force to titin.


Muscle Contraction , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Actin Cytoskeleton , Actomyosin/physiology , Animals , Connectin/physiology , Isometric Contraction , Rats
18.
Hum Mov Sci ; 52: 96-107, 2017 Apr.
Article En | MEDLINE | ID: mdl-28182970

Template models, which are utilized to demonstrate general aspects in human locomotion, mostly investigate stance leg operation. The goal of this paper is presenting a new conceptual walking model benefiting from swing leg dynamics. Considering a double pendulum equipped with combinations of biarticular springs for the swing leg beside spring-mass (SLIP) model for the stance leg, a novel SLIP-based model, is proposed to explain human-like leg behavior in walking. The action of biarticular muscles in swing leg motion helps represent human walking features, like leg retraction, ground reaction force and generating symmetric walking patterns, in simulations. In order to stabilize the motion by the proposed passive structure, swing leg biarticular muscle parameters such as lever arm ratios, stiffnesses and rest lengths need to be properly adjusted. Comparison of simulation results with human experiments shows the ability of the proposed model in replicating kinematic and kinetic behavior of both stance and swing legs as well as biarticular thigh muscle force of the swing leg. This substantiates the important functional role of biarticular muscles in leg swing.


Leg/physiology , Movement/physiology , Muscle, Skeletal/physiology , Algorithms , Arm/anatomy & histology , Arm/physiology , Biomechanical Phenomena , Computer Simulation , Gait/physiology , Humans , Kinetics , Leg/anatomy & histology , Models, Anatomic , Posture/physiology , Thigh/anatomy & histology , Thigh/physiology , Walking/physiology
19.
J Exp Biol ; 220(Pt 3): 478-486, 2017 Feb 01.
Article En | MEDLINE | ID: mdl-27888201

Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs.


Leg/physiology , Posture , Walking , Adult , Animals , Biomechanical Phenomena , Birds/anatomy & histology , Birds/physiology , Electromyography , Female , Gait , Humans , Joints/anatomy & histology , Joints/physiology , Leg/anatomy & histology , Lower Extremity/anatomy & histology , Lower Extremity/physiology , Male , Models, Biological , Range of Motion, Articular , Young Adult
20.
Bioinspir Biomim ; 11(4): 046003, 2016 07 01.
Article En | MEDLINE | ID: mdl-27367459

Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.


Artificial Limbs , Biomimetic Materials , Leg/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Robotics , Animals , Compliance/physiology , Energy Metabolism/physiology , Functional Laterality , Humans , Postural Balance/physiology , Software
...