Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Environ Pollut ; 349: 123840, 2024 May 15.
Article En | MEDLINE | ID: mdl-38537797

Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 µg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.


Benzophenones , Cell Movement , Embryo Implantation , Sunscreening Agents , Trophoblasts , Ultraviolet Rays , Benzophenones/toxicity , Sunscreening Agents/toxicity , Sunscreening Agents/pharmacology , Trophoblasts/drug effects , Cell Movement/drug effects , Mice , Animals , Humans , Embryo Implantation/drug effects , Blastocyst/drug effects , Female , Cell Line
2.
Arch Toxicol ; 98(6): 1909-1918, 2024 Jun.
Article En | MEDLINE | ID: mdl-38553590

Previously, we found that the ultraviolet filter benzophenone-3 (BP3) causes fetal growth restriction in mice when is applied when implantation occurs (first week of gestation). However, whether BP3 can affect gestation and fertility after implantation period is unknown. We aimed to study the effects on reproductive physiology of the offspring caused by perinatal exposure to BP3. C57BL/6 pregnant mice were dermally exposed to 50 mg BP3/kg bw.day or olive oil (vehicle) from gestation day 9 (gd9) to postnatal day 21 (pnd1). We observed no differences in mother's weights, duration of gestation, number of pups per mother, onset of puberty or sex ratio. The weights of the pups exposed to benzophenone-3 were transiently lower than those of the control. Estrous cycle was not affected by perinatal exposure to BP3. Besides, we performed a fertility assessment by continuous breeding protocol: at 10 weeks of age, one F1 female and one F1 male mouse from each group was randomly chosen from each litter and housed together for a period of 6 months. We noticed a reduction in the number of deliveries per mother among dams exposed to BP3 during the perinatal period. To see if this decreased fertility could be associated to an early onset of oocytes depletion, we estimated the ovarian reserve of germ cells. We found reduced number of oocytes and primordial follicles in BP3. In conclusion, perinatal exposure to BP3 leads to a decline in the reproductive capacity of female mice in a continuous breeding protocol linked to oocyte depletion.


Benzophenones , Mice, Inbred C57BL , Oocytes , Prenatal Exposure Delayed Effects , Animals , Female , Benzophenones/toxicity , Benzophenones/administration & dosage , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Oocytes/drug effects , Mice , Fertility/drug effects , Sunscreening Agents/toxicity , Maternal Exposure/adverse effects
3.
Arch Toxicol ; 94(8): 2847-2859, 2020 08.
Article En | MEDLINE | ID: mdl-32430675

The aim of this study was to analyze whether dermal exposure to benzophenone 3 (BP-3) during pregnancy affects critical parameters of pregnancy, and whether this exposure may affect the outcome of a second pregnancy in mice. Pregnant mice were exposed to 50-mg BP-3/kg body weight/day or olive oil (vehicle) from gestation day (gd) 0 to gd6 by dermal exposure. High-frequency ultrasound imaging was used to follow up fetal and placental growth in vivo. Blood flow parameters in uterine and umbilical arteries were analyzed by Doppler measurements. Mice were killed at gd5, gd10, and gd14 on the first pregnancy, and at gd10 and 14 on the second pregnancy. The weight of the first and second progenies was recorded, and sex ratio was analyzed. BP-3 levels were analyzed in serum and amniotic fluid. BP-3 reduced the fetal weight at gd14 and feto-placenta index of first pregnancy, with 16.13% of fetuses under the 5th percentile; arteria uterina parameters showed altered pattern at gd10. BP-3 was detected in serum 4 h after the exposure at gd6, and in amniotic fluid at gd14. Offspring weight of first progeny was lower in BP-3 group. Placenta weights of BP-3 group were decreased in second pregnancy. First and second progenies of mothers exposed to BP-3 showed a higher percentage of females (female sex ratio). Dermal exposure to low dose of BP-3 during early pregnancy resulted in an intrauterine growth restriction (IUGR) phenotype, disturbed sex ratio and alterations in the growth curve of the offspring in mouse model.


Benzophenones/toxicity , Fetal Development/drug effects , Fetal Growth Retardation/chemically induced , Sex Ratio , Sunscreening Agents/toxicity , Administration, Cutaneous , Amniotic Fluid/metabolism , Animals , Benzophenones/administration & dosage , Benzophenones/blood , Female , Fetal Growth Retardation/blood , Fetal Growth Retardation/physiopathology , Gestational Age , Male , Maternal Exposure , Maternal-Fetal Exchange , Mice, Inbred BALB C , Mice, Inbred C57BL , Placentation/drug effects , Pregnancy , Risk Assessment , Sunscreening Agents/administration & dosage , Sunscreening Agents/metabolism
4.
Curr Protoc Toxicol ; 82(1): e89, 2019 12.
Article En | MEDLINE | ID: mdl-31765519

We describe a detailed protocol to establish a newborn rat whole ovary culture, which enables the study of direct effects (independent of hypothalamic-pituitary-gonadal axis) of endocrine disrupting chemicals (EDCs), such as benzophenone-3 (BP-3). This method is useful to understand changes in follicle formation, primordial to primary transition, and expression of regulatory molecules linked to these processes and also provides an alternative to animal models. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Rat ovarian surgery Basic Protocol 2: Whole organ/ovarian culture Basic Protocol 3: RNA isolation and quantitative real-time PCR Basic Protocol 4: Histological processing and staining.


Benzophenones/toxicity , Endocrine Disruptors/toxicity , Ovary/anatomy & histology , Ovary/drug effects , Sunscreening Agents/toxicity , Tissue Culture Techniques/methods , Animals , Animals, Newborn , Female , Guidelines as Topic , Ovary/surgery , Rats, Wistar
5.
Environ Pollut ; 251: 493-501, 2019 Aug.
Article En | MEDLINE | ID: mdl-31103009

17α-ethinyl estradiol (EE2) is a synthetic compound widely used in the generation of contraceptive pills. EE2 is present in the urine of women taking contraceptives and its presence has been confirmed at increasing concentrations contaminating rivers all over the world. Because of this cycle, it can entry the human food chain when watering plants. A negative influence of EE2 on fertility and reproductive capacity of wildlife was already suggested. The short-term impact of exposure to contaminating EE2 on pregnancy outcome has not been addressed. Pregnant mice were exposed to either 0.005 µg (concentrations found in water) or 5 µg EE2/kg (contraceptive dose) body weight/day from gestation day 1-7 by oral gavage. Control mice received a 0.1% ethanol solution. High frequency ultrasound imaging was used to follow-up fetal and placental growth in vivo. Doppler measurements were utilized to analyze blood flow parameters in uterine and umbilical arteries. Mice were sacrificed at gd5, 10, and 14. We show that most fetuses of mothers exposed to the high EE2 dose die intrauterine at gd10, with implantation sizes beginning to be smaller already at gd8. Mothers exposed to the low EE2 dose show an impaired remodeling of the spiral arteries, a higher placental weight and pups that are large for gestational age. The insulin-like growth factor system that regulates fetal and placental growth and development is affected by the EE2 treatment. Our results show that a short-term exposure to EE2 during early pregnancy has severe consequences for fetal growth and survival depending on the dose. Exposition to synthetic estrogens affects placenta growth and angiogenesis. These findings urge to the study of mechanisms dysregulated upon environmental exposition to estrogens.


Ethinyl Estradiol/toxicity , Fetal Development/drug effects , Maternal Exposure/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Placenta/blood supply , Placenta/drug effects , Pregnancy , Pregnancy Outcome , Survival Analysis
6.
Sci Rep ; 8(1): 9196, 2018 06 15.
Article En | MEDLINE | ID: mdl-29907759

Endocrine disrupting chemicals are long suspected to impair reproductive health. Bisphenol A (BPA) has estrogenic activity and therefore the capacity of interfering with endocrine pathways. No studies dissected its short-term effects on pregnancy and possible underlying mechanisms. Here, we studied how BPA exposure around implantation affects pregnancy, particularly concentrating on placentation and uterine remodeling. We exposed pregnant female mice to 50 µg/kg BPA/day or 0.1% ethanol by oral gavage from day 1 to 7 of gestation. High frequency ultrasound was employed to document the presence and size of implantations, placentas and fetuses throughout pregnancy. Blood velocity in the arteria uterina was analyzed by Doppler measurements. The progeny of mothers exposed to BPA was growth-restricted compared to the controls; this was evident in vivo as early as at day 12 as analyzed by ultrasound and confirmed by diminished fetal and placenta weights observed after sacrificing the animals at day 14 of gestation. The remodeling of uterine spiral arteries (SAs) was considerably impaired. We show that short-term exposure to a so-called "safe" BPA dose around implantation has severe consequences. The intrauterine growth restriction observed in more than half of the fetuses from BPA-treated mothers may owe to the direct negative effect of BPA on the remodeling of uterine SAs that limits the blood supply to the fetus. Our work reveals unsuspected short-term effects of BPA on pregnancy and urges to more studies dissecting the mechanisms behind the negative actions of BPA during early pregnancy.


Arteries , Benzhydryl Compounds/toxicity , Fetal Growth Retardation , Maternal Exposure/adverse effects , Phenols/toxicity , Uterus , Vascular Remodeling/drug effects , Animals , Arteries/diagnostic imaging , Arteries/physiopathology , Blood Flow Velocity/drug effects , Echocardiography, Doppler , Female , Fetal Growth Retardation/chemically induced , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/physiopathology , Fetus/blood supply , Fetus/diagnostic imaging , Fetus/physiopathology , Male , Mice , Mice, Inbred BALB C , Placenta/blood supply , Placenta/diagnostic imaging , Placenta/physiopathology , Pregnancy , Uterus/blood supply , Uterus/diagnostic imaging , Uterus/physiopathology
...