Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1303022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143583

RESUMEN

Introduction: Functional trait-based approaches are extensively applied to the study of mechanisms governing community assembly along environmental gradients. These approaches have been classically based on studying differences in mean values among species, but there is increasing recognition that alternative metrics of trait distributions should be considered to decipher the mechanisms determining community assembly and species coexistence. Under this framework, the main aim of this study is to unravel the effects of environmental conditions as drivers of plant community assembly in sub-Mediterranean ecotones. Methods: We set 60 plots in six plant communities of a sub-Mediterranean forest in Central Spain, and measured key above- and belowground functional traits in 411 individuals belonging to 19 species, along with abiotic variables. We calculated community-weighted mean (CWM), skewness (CWS) and kurtosis (CWK) of three plant dimensions, and used maximum likelihood techniques to analyze how variation in these functional community traits was driven by abiotic factors. Additionally, we estimated the relative contribution of intraspecific trait variability and species turnover to variation in CWM. Results and discussion: The first three axes of variation of the principal component analyses were related to three main plant ecological dimensions: Leaf Economics Spectrum, Root Economics Spectrum and plant hydraulic architecture, respectively. Type of community was the most important factor determining differences in the functional structure among communities, as compared to the role of abiotic variables. We found strong differences among communities in their CWMs in line with their biogeographic origin (Eurosiberian vs Mediterranean), while differences in CWS and CWK indicate different trends in the functional structure among communities and the coexistence of different functional strategies, respectively. Moreover, changes in functional composition were primarily due to intraspecific variability. Conclusion: We observed a high number of strategies in the forest with the different communities spreading along the acquisitive-conservative axis of resource-use, partly matching their Eurosiberian-Mediterranean nature, respectively. Intraspecific trait variability, rather than species turnover, stood as the most relevant factor when analyzing functional changes and assembly patterns among communities. Altogether, our data support the notion that ecotones are ecosystems where relatively minor environmental shifts may result in changes in plant and functional composition.

2.
Ann Bot ; 132(3): 471-484, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37724864

RESUMEN

BACKGROUND AND AIMS: Submediterranean areas are rich ecotones, where slight modifications in environmental conditions can lead to substantial changes in the composition of plant communities. They thus offer an ideal scenario to examine plant community assembly. In this study, we followed a trait-based approach including intraspecific variability to elucidate (1) the relationship between niche occupancy components and species richness, (2) the processes governing the assembly of these communities and (3) the contribution of intraspecific trait variability in shaping the functional trait space. METHODS: We measured eight morphological and chemical traits in 405 individuals across 60 plots located in different forest communities (Mediterranean, Eurosiberian and Mixed) coexisting within a submediterranean ecosystem in central Spain. We calculated three niche occupancy components related to Hutchinson's n-dimensional hypervolumes: the total functional volume of the community, the functional overlap between species within the community and the average functional volume per species, and then used null models to explore the relative importance of habitat filtering, limiting similarity and intraspecific variability as assembly patterns. KEY RESULTS: Both habitat filtering and niche differentiation drive the community assembly of Mediterranean communities, whereas limiting similarity and hierarchical competition shape Eurosiberian communities. Intraspecific responses were mostly explained by shifts in species niches across the functional space (changes in the position of the centroids of hypervolumes). CONCLUSIONS: Different assembly mechanisms govern the structure of Mediterranean, Eurosiberian and Mixed plant communities. Combining niche occupancy components with a null model approach at different spatial scales offers new insights into the mechanisms driving plant community assembly. Consideration of intraspecific variability is key for understanding the mechanisms governing species coexistence in species-rich ecotones.


Asunto(s)
Ecosistema , Plantas , Humanos , Bosques , Fenotipo , Ocupaciones
3.
Tree Physiol ; 43(10): 1731-1744, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37471648

RESUMEN

The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.


Asunto(s)
Dióxido de Carbono , Árboles , Estaciones del Año , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Carbono/metabolismo , Hojas de la Planta/metabolismo
4.
J Plant Physiol ; 275: 153761, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35803049

RESUMEN

Increasing air temperatures and decreasing rainfall can alter Mediterranean ecosystems, where summer heat and drought already limit plant regeneration. Manipulative field studies can help to understand and anticipate community responses to climate changes. In a Mediterranean oak wooded pasture, we have investigated the effects of warming (W, via open-top chambers increasing 1.4 °C mean air temperature), reduced rainfall (D, via gutters removing 33% of rainfall) and the combination of both factors (WD) on the winter-annual Geranium dissectum L. We measured reproductive phenology and output, leaf physiology during the reproductive phase, and plant relative abundance. Warming had a positive effect on plant height and little effects on leaf physiology. Rainfall reduction enhanced leaf water use efficiency. However, the most noticeable effects occurred in WD plants, which exhibited lower leaf predawn water potential and earlier flowering phenology in the first year of treatment, and a higher ratio of leaf dark respiration (R) to net CO2 assimilation (Pn) at comparable temperatures in the third year, compared to control plants. Leaf R at ambient temperature was similar across climatic treatments. The relative abundance of G. dissectum decreased by 23% over three years, but similarly across treatments. A short life cycle helps G. dissectum to escape severe late-spring heat and drought stress. Moreover, stomata closure and thermal acclimation of R can attenuate plant stress impact on reproduction. Adaptability of the short-lived annual G. dissectum could mitigate climate change impact on community composition over short periods (e.g. three years); however, a reduction in net carbon gain could eventually affect its reproductive success and persistence in the community.


Asunto(s)
Ecosistema , Pradera , Hojas de la Planta , Cambio Climático , Hojas de la Planta/fisiología , Plantas , Temperatura , Agua
5.
Plant Cell Environ ; 45(10): 2875-2897, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35864739

RESUMEN

The number and intensity of flood events will likely increase in the future, raising the risk of flooding stress in terrestrial plants. Understanding flood effects on plant physiology and plant-associated microbes is key to alleviate flooding stress in sensitive species and ecosystems. Reduced oxygen supply is the main constrain to the plant and its associated microbiome. Hypoxic conditions hamper root aerobic respiration and, consequently, hydraulic conductance, nutrient uptake, and plant growth and development. Hypoxia favours the presence of anaerobic microbes in the rhizosphere and roots with potential negative effects to the plant due to their pathogenic behaviour or their soil denitrification ability. Moreover, plant physiological and metabolic changes induced by flooding stress may also cause dysbiotic changes in endosphere and rhizosphere microbial composition. The negative effects of flooding stress on the holobiont (i.e., the host plant and its associated microbiome) can be mitigated once the plant displays adaptive responses to increase oxygen uptake. Stress relief could also arise from the positive effect of certain beneficial microbes, such as mycorrhiza or dark septate endophytes. More research is needed to explore the spiralling, feedback flood responses of plant and microbes if we want to promote plant flood tolerance from a holobiont perspective.


Asunto(s)
Inundaciones , Microbiota , Microbiota/fisiología , Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Plantas , Rizosfera , Microbiología del Suelo
6.
Plant Cell Environ ; 45(7): 1967-1984, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394675

RESUMEN

Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.


Asunto(s)
Quercus , Aclimatación , Deshidratación , Sequías , Hojas de la Planta/fisiología , Quercus/fisiología , Árboles
7.
Front Plant Sci ; 13: 1084043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714788

RESUMEN

Pinus koraiensis is famous for its high-quality timber production all the way and is much more famous for its high value health-care nut oil production potential since 1990's, but the less understanding of its reproduction biology seriously hindered its nut productivity increase. Exploring the effects of reproduction on nutrient uptake, allocation and storage help to understand and modify reproduction patterns in masting species and high nut yield cultivar selection and breeding. Here, we compared seasonality in growth and in nitrogen ([N]) and phosphorus ([P]) concentrations in needles, branches and cones of reproductive (cone-bearing) and vegetative branches (having no cones) of P. koraiensis during a masting year. The growth of one- and two-year-old reproductive branches was significantly higher than that of vegetative branches. Needle, phloem and xylem [N] and [P] were lower in reproductive branches than in vegetative branches, although the extent and significance of the differences between branch types varied across dates. [N] and [P] in most tissues were high in spring, decreased during summer, and then recovered by the end of the growing season. Overall, [N] and [P] were highest in needles, lowest in the xylem and intermediate in the phloem. More than half of the N (73.5%) and P (51.6%) content in reproductive branches were allocated to cones. There was a positive correlation between cone number and N and P content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-year-old reproductive branches. High nutrient sink strength of cones and vegetative tissues of reproductive branches suggested that customized fertilization practices can help improve crop yield in Pinus koraiensis.

8.
J Fungi (Basel) ; 7(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575725

RESUMEN

Some fungal endophytes of forest trees are recognized as beneficial symbionts against stresses. In previous works, two elm endophytes from the classes Cystobasidiomycetes and Eurotiomycetes promoted host resistance to abiotic stress, and another elm endophyte from Dothideomycetes enhanced host resistance to Dutch elm disease (DED). Here, we hypothesize that the combined effect of these endophytes activate the plant immune and/or antioxidant system, leading to a defense priming and/or increased oxidative protection when exposed to the DED pathogen Ophiostoma novo-ulmi. To test this hypothesis, the short-term defense gene activation and antioxidant response were evaluated in DED-susceptible (MDV1) and DED-resistant (VAD2 and MDV2.3) Ulmus minor genotypes inoculated with O. novo-ulmi, as well as two weeks earlier with a mixture of the above-mentioned endophytes. Endophyte inoculation induced a generalized transient defense activation mediated primarily by salicylic acid (SA). Subsequent pathogen inoculation resulted in a primed defense response of variable intensity among genotypes. Genotypes MDV1 and VAD2 displayed a defense priming driven by SA, jasmonic acid (JA), and ethylene (ET), causing a reduced pathogen spread in MDV1. Meanwhile, the genotype MDV2.3 showed lower defense priming but a stronger and earlier antioxidant response. The defense priming stimulated by elm fungal endophytes broadens our current knowledge of the ecological functions of endophytic fungi in forest trees and opens new prospects for their use in the biocontrol of plant diseases.

9.
Tree Physiol ; 41(12): 2279-2292, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046675

RESUMEN

Rear-edge tree populations forming the equatorward limit of distribution of temperate species are assumed to be more adapted to climate variability than central (core) populations. However, climate is expected to become more variable and the frequency of climate extremes is forecasted to increase. Climatic extreme events such as heat waves, dry spells and spring frosts could become more frequent, and negatively impact and jeopardize rear-edge stands. To evaluate these ideas, we analyzed the growth response of trees to successive spring frosts in a mixed forest, where two temperate deciduous species, Fagus sylvatica L. (European beech) and Quercus petraea (Matt.) Liebl. (sessile oak), both at their southernmost edge, coexist with the Mediterranean Quercus pyrenaica Willd. (Pyrenean oak). Growth reductions in spring-frost years ranked across species as F. sylvatica > Q. petraea > Q. pyrenaica. Leaf flushing occurred earlier in F. sylvatica and later in Q. pyrenaica, suggesting that leaf phenology was a strong determinant of spring frost damage and stem growth reduction. The frost impact depended on prior climate conditions, since warmer days prior to frost occurrence predisposed to frost damage. Autumn Normalized Difference Vegetation Index data showed delayed leaf senescence in spring-frost years and subsequent years as compared with pre-frost years. In the studied forest, the negative impact of spring frosts on Q. petraea and especially on F. sylvatica growth, was considerably higher than the impacts due to drought. The succession of four spring frosts in the last two decades determined a trend of decreasing resistance of radial growth to frosts in F. sylvatica. The increased frequency of spring frosts might prevent the expansion and persistence of F. sylvatica in this rear-edge Mediterranean population.


Asunto(s)
Fagus , Árboles , Cambio Climático , Bosques , Estaciones del Año , España
10.
J Plant Physiol ; 261: 153420, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33906025

RESUMEN

Long-lived trees benefit from fungal symbiotic interactions in the adaptation to constantly changing environments. Previous studies revealed a core fungal endobiome in Ulmus minor which has been suggested to play a critical role in plant functioning. Here, we hypothesized that these core endophytes are involved in abiotic stress tolerance. To test this hypothesis, two core endophytes (Cystobasidiales and Chaetothyriales) were inoculated into in vitro U. minor plantlets, which were further subjected to drought. Given that elm genotypes resistant to Dutch elm disease (DED) tend to show higher abiotic stress tolerance than susceptible ones, we tested the endophyte effect on two DED-resistant and two DED-susceptible genotypes. Drought stress was moderate; endophyte presence attenuated stomata closure in response to drought in one genotype but this stress did not affect plant survival. In comparison, long-term in-vitro culture proved stressful to mock-inoculated plants, especially in DED-susceptible genotypes. Interestingly, no endophyte-inoculated plant died during the experiment, as compared to high mortality in mock-inoculated plants. In surviving plants, endophyte presence stimulated root and shoot growth, photosynthetic rates, antioxidant activity and molecular changes involving auxin-signaling. These changes and the observed endophyte stability in elm tissues throughout the experiment suggest endophytes are potential tools to improve survival and stress tolerance of DED-resistant elms in elm restoration programs.


Asunto(s)
Ascomicetos/fisiología , Basidiomycota/fisiología , Endófitos/fisiología , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Plantones/fisiología , Ulmus/fisiología , Sequías , Genotipo , Longevidad/fisiología , Enfermedades de las Plantas/genética , Raíces de Plantas/microbiología , Ulmus/crecimiento & desarrollo , Ulmus/microbiología
11.
Heredity (Edinb) ; 126(5): 748-762, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608652

RESUMEN

The impact of reduced rainfall and increased temperatures forecasted by climate change models on plant communities will depend on the capacity of plant species to acclimate and adapt to new environmental conditions. The acclimation process is mainly driven by epigenetic regulation, including structural and chemical modifications on the genome that do not affect the nucleotide sequence. In plants, one of the best-known epigenetic mechanisms is cytosine-methylation. We evaluated the impact of 30% reduced rainfall (hereafter "drought" treatment; D), 3 °C increased air temperature ("warming"; W), and the combination of D and W (WD) on the phenotypic and epigenetic variability of Hordeum murinum subsp. leporinum L., a grass species of high relevance in Mediterranean agroforestry systems. A full factorial experiment was set up in a savannah-like ecosystem located in southwestern Spain. H. murinum exhibited a large phenotypic plasticity in response to climatic conditions. Plants subjected to warmer conditions (i.e., W and WD treatments) flowered earlier, and those subjected to combined stress (WD) showed a higher investment in leaf area per unit of leaf mass (i.e., higher SLA) and produced heavier seeds. Our results also indicated that both the level and patterns of methylation varied substantially with the climatic treatments, with the combination of D and W inducing a clearly different epigenetic response compared to that promoted by D and W separately. The main conclusion achieved in this work suggests a potential role of epigenetic regulation of gene expression for the maintenance of homoeostasis and functional stability under future climate change scenarios.


Asunto(s)
Liebres , Hordeum , Animales , Cambio Climático , Ecosistema , Epigénesis Genética , Hordeum/genética
12.
Physiol Plant ; 172(2): 391-404, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32671841

RESUMEN

Metabolic changes underpinning drought-induced variations in stem respiration (Rs ) are unknown. We measured Rs rates and metabolite and gene expression profiles in Ulmus minor Mill. and Quercus ilex L. seedlings subjected to increasing levels of drought stress to better understand how carbon, nitrogen and energy metabolism interact during drought. In both species, only plants showing extreme stress symptoms - i.e. negligible rates of leaf stomatal conductance and photosynthesis, and high stem dehydration (30-50% of maximum water storage) and contraction (50-150 µm week-1 ) - exhibited lower Rs rates than well-watered plants. Abundance of low-molecular weight sugars (e.g. glucose and fructose) and sugar alcohols (e.g. mannitol) increased with drought, at more moderate stress and to a higher extent in Q. ilex than U. minor. Abundance of amino acids increased at more severe stress, more abruptly, and to a higher extent in U. minor, coinciding with leaf senescence, which did not occur in Q. ilex. Organic acids changed less in response to drought: threonate and glycerate increased, and citrate decreased although slightly in both species. Transcripts of genes coding for enzymes of the Krebs cycle decreased in Q. ilex and increased in U. minor in conditions of extreme drought stress. The maintenance of Rs under severe growth and photosynthetic restrictions reveals the importance of stem mitochondrial activity in drought acclimation. The eventual decline in Rs diverts carbon substrates from entering the Krebs cycle that may help to cope with osmotic and oxidative stress during severe drought and to recover hydraulic functionality afterwards.


Asunto(s)
Sequías , Quercus , Fotosíntesis , Hojas de la Planta , Quercus/genética , Frecuencia Respiratoria , Agua
13.
Plant Cell Environ ; 43(6): 1528-1544, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32154937

RESUMEN

Stem water storage capacity and hydraulic capacitance (CS ) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m-3 MPa-1 , respectively), but only during the first phase of the desorption curve, when predawn water potential was above -1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m-3 MPa-1 ). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.


Asunto(s)
Aclimatación/fisiología , Tallos de la Planta/fisiología , Quercus/fisiología , Agua/fisiología , Impedancia Eléctrica , Modelos Lineales , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Lluvia , Estaciones del Año , Temperatura
14.
Tree Physiol ; 40(7): 886-903, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32175581

RESUMEN

Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.


Asunto(s)
Sequías , Micobioma/genética , Inundaciones , Fotosíntesis , Hojas de la Planta , Estrés Fisiológico , Árboles/genética
15.
Tree Physiol ; 39(11): 1838-1854, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31211374

RESUMEN

Given the importance of carbon allocation for plant performance and fitness, it is expected that competition and abiotic stress influence respiratory costs associated with stem wood biomass production and maintenance. In this study, stem respiration (R) was measured together with stem diameter increment in adult trees of eight co-occurring species in a sub-Mediterranean forest stand for 2 years. We estimated growth R (Rg), maintenance R (Rm) and the growth respiration coefficient (GRC) using two gas exchange methods: (i) estimating Rg as the product of growth and GRC (then Rm as R minus Rg) and (ii) estimating Rm from temperature-dependent kinetics of basal Rm at the dormant season (then Rg as R minus Rm). In both cases, stem basal-area growth rates governed intra-annual variation in R, Rg and Rm. Maximum annual Rm occurred slightly before or after maximum Rg. The mean contribution of Rm to R during the growing season ranged from 56% to 88% across species using method 1 and from 23% to 66% using method 2. An analysis accounting for the phylogenetic distance among species indicated that more shade-tolerant, faster growing species exhibited higher Rm and Rg than less shade-tolerant, slower growing ones, suggesting a balance between carbon supply and demand mediated by growth. However, GRC was not related to species growth rate, wood density, or drought and shade tolerance across the surveyed species nor across 27 tree species for which GRC was compiled. The GRC estimates based on wood chemical analysis were lower (0.19) than those based on gas exchange methods (0.35). These results give partial support to the hypothesis that wood production and maintenance costs are related to species ecology and highlight the divergence of respiratory parameters widely used in plant models according to the methodological approach applied to derive them.


Asunto(s)
Bosques , Madera , Biomasa , Sequías , Filogenia
16.
Tree Physiol ; 39(1): 64-75, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30099558

RESUMEN

In Mediterranean-type ecosystems, drought is considered the main ecological filter for seedling establishment. The evergreen oaks Quercus ilex L. and Quercus suber L. are two of the most abundant tree species in the Mediterranean Basin. Despite their shared evergreen leaf habit and ability to resist low soil water potentials, traditionally it has been suggested that Q. ilex is better suited to resist dry conditions than Q. suber. In this study, we examined how seedlings of Q. ilex and Q. suber grown in sandy soils responded to different levels of water availability using natural dry conditions and supplemental watering. Specifically, we estimated survival and water status of seedlings and explored the role of acorn mass and belowground biomass in seedling performance. To our surprise, Q. suber was better able to survive the summer drought in our experiment than Q. ilex. Nearly 55% of the Q. suber seedlings remained alive after a 2-month period without rain or supplemental water, which represents almost 20% higher survival than Q. ilex over the same period. At the end of the dry period, the surviving seedlings of Q. suber had strikingly higher water potential, potential maximum quantum yield of photosystem II (Fv/Fm) and stomatal conductance (gs) than those of Q. ilex. Acorn mass was associated with the probability of survival under dry conditions; however, it did not explain the differences in survival or water status between the species. In contrast, Q. suber had a higher root ratio and root:shoot ratio than Q. ilex and these traits were positively associated with predawn leaf water potential, Fv/Fm, gs and survival. Taken together, our results suggest that the higher relative investment in roots by Q. suber when growing in a sandy acidic substrate allowed this species to maintain better physiological status and overall condition than Q. ilex, increasing its probability of survival in dry conditions.


Asunto(s)
Sequías , Raíces de Plantas/fisiología , Quercus/fisiología , Plantones/fisiología , Suelo/química , Árboles/fisiología , Raíces de Plantas/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Agua
17.
Tree Physiol ; 38(2): 252-262, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040781

RESUMEN

Dutch elm disease (DED) is a vascular disease that has killed over 1 billion elm trees. The pathogen spreads throughout the xylem network triggering vessel blockage, which results in water stress, tissue dehydration and extensive leaf wilting in susceptible genotypes. We investigated the differences between four Ulmus minor Mill. clones of contrasting susceptibility to Ophiostoma novo-ulmi Brasier regarding morphological, anatomical and physiological traits affecting water transport, in order to gain a better understanding of the mechanisms underlying DED susceptibility. We analyzed the differential response to water shortage and increased air vapor pressure deficit (VPD) to investigate whether resistance to water stress might be related to DED tolerance. Sixteen plants per clone, aged 2 years, were grown inside a greenhouse under differential watering. Stomatal conductance was measured under ambient and increased VPD. Growth, bark water content and stem hydraulic and anatomical parameters were measured 22 days after starting differential watering. Vessel lumen area, lumen fraction and hydraulic conductance were highest in susceptible clones. Stomatal conductance was lowest under low VPD and decreased faster under increased VPD in resistant clones. We found a negative relationship between the decrease in stomatal conductance at increased VPD and specific hydraulic conductance, revealing a narrower hydraulic margin for sustaining transpiration in resistant clones. The effect of water shortage was greater on radial stem growth than on leaf area, which could be explained through an extensive use of capacitance water to buffer xylem water potential. Water shortage reduced stomatal conductance and vessel lumen area. Bark water content under conditions of water shortage only decreased in susceptible clones. Higher hydraulic constraints to sap flow in resistant clones may determine higher stomatal sensitivity to VPD and so contribute to DED resistance by limiting pathogen expansion and reducing water loss and metabolic impairment in cells involved in fighting against infection.


Asunto(s)
Antibiosis , Ophiostoma/fisiología , Ulmus/fisiología , Corteza de la Planta/metabolismo , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Ulmus/microbiología , Agua/metabolismo
18.
Physiol Plant ; 162(4): 394-408, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28984911

RESUMEN

Drought-induced reduction of leaf gas exchange entails a complex regulation of the plant leaf metabolism. We used a combined molecular and physiological approach to understand leaf photosynthetic and respiratory responses of 2-year-old Quercus ilex seedlings to drought. Mild drought stress resulted in glucose accumulation while net photosynthetic CO2 uptake (Pn ) remained unchanged, suggesting a role of glucose in stress signaling and/or osmoregulation. Simple sugars and sugar alcohols increased throughout moderate-to-very severe drought stress conditions, in parallel to a progressive decline in Pn and the quantum efficiency of photosystem II; by contrast, minor changes occurred in respiration rates until drought stress was very severe. At very severe drought stress, 2-oxoglutarate dehydrogenase complex gene expression significantly decreased, and the abundance of most amino acids dramatically increased, especially that of proline and γ-aminobutyric acid (GABA) suggesting enhanced protection against oxidative damage and a reorganization of the tricarboxylic cycle acid cycle via the GABA shunt. Altogether, our results point to Q. ilex drought tolerance being linked to signaling and osmoregulation by hexoses during early stages of drought stress, and enhanced protection against oxidative damage by polyols and amino acids under severe drought stress.


Asunto(s)
Dióxido de Carbono/metabolismo , Sequías , Quercus/metabolismo , Aminobutiratos/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Prolina/metabolismo , Quercus/fisiología
19.
Tree Physiol ; 37(6): 815-826, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369592

RESUMEN

Plant surface properties influence solid-liquid interactions and matter exchange between the organs and their surrounding environment. In the case of fruits, surface processes may be of relevance for seed production and dispersal. To gain insight into the relationship between surface structure, chemical composition and function of aerial reproductive organs, we performed diverse experiments with the dry, winged fruits, or samaras, of Ulmus laevis Pall. and Ulmus minor Mill. both at the time of full maturity (green samaras) and of samara dispersal (dry samaras). Samaras of both elm species showed positive photosynthetic rates and absorbed water through their epidermal surfaces. The surface wettability, free energy, polarity and solubility parameter were lower in U. laevis than in U. minor and decreased for dry samaras in both species. Ulmus laevis samaras had a high degree of surface nano-roughness mainly conferred by cell wall folds containing pectins that substantially increased after hydration. The samaras in this species also had a thicker cuticle that could be isolated by enzymatic digestion, whereas that of U. minor samaras had higher amounts of soluble lipids. Dry samaras of U. laevis had higher floatability and lower air sustentation than those of U. minor. We concluded that samaras contribute to seed development by participating in carbon and water exchange. This may be especially important for U. minor, whose samaras develop before leaf emergence. The trichomes present along U. laevis samara margin may enhance water absorption and samara floatability even in turbulent waters. In general, U. minor samaras show traits that are consistent with a more drought tolerant character than U. laevis samaras, in line with the resources available both at the tree and ecosystem level for these species. Samara features may additionally reflect different adaptive strategies for seed dispersal and niche differentiation between species, by favoring hydrochory for U. laevis and anemochory for U. minor.


Asunto(s)
Dispersión de Semillas , Semillas/fisiología , Ulmus/fisiología , Propiedades de Superficie
20.
Plant Cell Environ ; 40(8): 1379-1391, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28152583

RESUMEN

Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (RX ) and stem hydraulic capacitance (CS ) with predawn water potential (ΨPD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when CS was allowed to decrease with decreasing ΨPD . Hydraulic capacitance decreased from 62 to 25 kg m-3 MPa-1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in CS for tree hydraulic functioning, and they suggest that CS should be considered to predict the drought response of trees with models.


Asunto(s)
Sequías , Modelos Biológicos , Tallos de la Planta/fisiología , Quercus/fisiología , Árboles/fisiología , Agua/fisiología , Calibración , Simulación por Computador , Quercus/anatomía & histología , Lluvia , Temperatura , Árboles/anatomía & histología , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...