Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165005

RESUMEN

Metal-metal bonding is crucial in chemistry for advancing our understanding of the fundamental aspects of chemical bonds. Metal-metal bonds based on alkaline-earth (Ae) elements, especially the heavier Ae elements (Ca, Sr, and Ba), are rarely reported due to their high electropositivity. Herein, we report two heteronuclear di-EMFs CaY@Cs(6)-C82 and CaY@C2v(5)-C80, which contain unprecedented single-electron Ca-Y metal-metal bonds. These compounds were characterized by single-crystal X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The crystallographic study of CaY@Cs(6)-C82 shows that Ca and Y are successfully encapsulated into the carbon cage with a Ca-Y distance of 3.691 Å. The CW-EPR study of both CaY@Cs(6)-C82 and CaY@C2v(5)-C80 exhibits a doublet, suggesting the presence of an unpaired electron located between Ca and Y. The combined experimental and theoretical results confirm the presence of a Ca-Y single-electron metal-metal bond with substantial covalent interaction, attributed to significant overlap between the 4s4p orbitals of Ca and the 5s5p4d orbitals of Y. Furthermore, pulse EPR spectroscopy was used to investigate the quantum coherence of the electron spin within this bond. The unpaired electron, characterized by its s orbital nature, is effectively protected by the carbon cage, resulting in efficient suppression of both spin-lattice relaxation and decoherence. CaY@Cs(6)-C82 behaves as an electron spin qubit, displaying a maximum decoherence time of 7.74 µs at 40 K. This study reveals an unprecedented Ae-rare-earth metal-metal bond stabilized by the fullerene cages and elucidates the molecular qubit properties stemming from their unique bonding character, highlighting their potential in quantum information processing applications.

2.
Beilstein J Org Chem ; 20: 92-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264452

RESUMEN

Fullerene dimerization inside a peapod is analyzed at DFT level by characterizing the stationary points and deriving the energy profile of the initial and reversible process named phase 1. We find that the barriers for the radical cation mechanism are significantly lower than those found for the neutral pathway. The peapod is mainly providing one-dimensional confinement for the reaction to take place in a more efficient way. Car-Parrinello metadynamics simulations provide hints on structures for the initial steps of the irreversible phase 2 where bond formation and breaking lead to important structural reorganizations within the coalescence process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA