Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Front Immunol ; 14: 1200259, 2023.
Article En | MEDLINE | ID: mdl-37475858

Introduction: Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. Methods: Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. Results: We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. Conclusions: Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.


Growth Hormone , Macrophages , Humans , Growth Hormone/pharmacology , Growth Hormone/metabolism , Glycolysis , Homeostasis , Mitochondria/metabolism
2.
Biol Imaging ; 3: e18, 2023.
Article En | MEDLINE | ID: mdl-38510172

Current live-cell imaging techniques make possible the observation of live events and the acquisition of large datasets to characterize the different parameters of the visualized events. They provide new insights into the dynamics of biological processes with unprecedented spatial and temporal resolutions. Here we describe the implementation and application of a new tool called TrackAnalyzer, accessible from Fiji and ImageJ. Our tool allows running semi-automated single-particle tracking (SPT) and subsequent motion classification, as well as quantitative analysis of diffusion and intensity for selected tracks relying on the graphical user interface (GUI) for large sets of temporal images (X-Y-T or X-Y-C-T dimensions). TrackAnalyzer also allows 3D visualization of the results as overlays of either spots, cells or end-tracks over time, along with corresponding feature extraction and further classification according to user criteria. Our analysis workflow automates the following steps: (1) spot or cell detection and filtering, (2) construction of tracks, (3) track classification and analysis (diffusion and chemotaxis), and (4) detailed analysis and visualization of all the outputs along the pipeline. All these analyses are automated and can be run in batch mode for a set of similar acquisitions.

3.
Front Immunol ; 13: 925559, 2022.
Article En | MEDLINE | ID: mdl-35903108

Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.


Receptors, CXCR4 , Sphingomyelins , Cell Movement , Ceramides/metabolism , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/metabolism , Humans , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Signal Transduction , T-Lymphocytes/metabolism
4.
Proc Natl Acad Sci U S A ; 119(21): e2119483119, 2022 05 24.
Article En | MEDLINE | ID: mdl-35588454

Chemokine receptor nanoscale organization at the cell membrane is orchestrated by the actin cytoskeleton and influences cell responses. Using single-particle tracking analysis we show that CXCR4R334X, a truncated mutant chemokine receptor linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), fails to nanoclusterize after CXCL12 stimulation, and alters the lateral mobility and spatial organization of CXCR4 when coexpressed. These findings correlate with multiple phalloidin-positive protrusions in cells expressing CXCR4R334X, and their inability to correctly sense chemokine gradients. The underlying mechanisms involve inappropriate actin cytoskeleton remodeling due to the inadequate ß-arrestin1 activation by CXCR4R334X, which disrupts the equilibrium between activated and deactivated cofilin. Overall, we provide insights into the molecular mechanisms governing CXCR4 nanoclustering, signaling and cell function, and highlight the essential scaffold role of ß-arrestin1 to support CXCL12-mediated actin reorganization and receptor clustering. These defects associated with CXCR4R334X expression might contribute to the severe immunological symptoms associated with WHIM syndrome.


Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Actin Depolymerizing Factors/metabolism , Cell Membrane/metabolism , Cell Movement , Humans , Mutation , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Single Molecule Imaging , Warts/genetics , Warts/metabolism
5.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Article En | MEDLINE | ID: mdl-33251605

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


B-Lymphocytes/immunology , COVID-19/pathology , Immunoglobulins/blood , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , COVID-19/immunology , Complement C3/analysis , Complement C4/analysis , Complement C5/analysis , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lymphocyte Count , Lymphopenia/immunology , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology
6.
J Immunol ; 205(3): 776-788, 2020 08 01.
Article En | MEDLINE | ID: mdl-32591394

Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.


Cellular Reprogramming/immunology , Colitis/immunology , Gene Expression Regulation/immunology , Growth Hormone/immunology , Macrophages/immunology , MafB Transcription Factor/immunology , Animals , Cattle , Cellular Reprogramming/genetics , Colitis/chemically induced , Colitis/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Growth Hormone/genetics , MafB Transcription Factor/genetics , Mice , Mice, Transgenic
7.
Biochem Biophys Res Commun ; 528(2): 347-358, 2020 07 23.
Article En | MEDLINE | ID: mdl-32145914

The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.


Receptors, Chemokine/metabolism , Animals , Chemokines/chemistry , Chemokines/metabolism , Chemotactic Factors/metabolism , Humans , Protein Multimerization
8.
Article En | MEDLINE | ID: mdl-31507535

Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.

9.
J Vis Exp ; (146)2019 04 09.
Article En | MEDLINE | ID: mdl-31033950

Particle tracking on a video sequence and the posterior analysis of their trajectories is nowadays a common operation in many biological studies. Using the analysis of cell membrane receptor clusters as a model, we present a detailed protocol for this image analysis task using Fiji (ImageJ) and Matlab routines to: 1) define regions of interest and design masks adapted to these regions; 2) track the particles in fluorescence microscopy videos; 3) analyze the diffusion and intensity characteristics of selected tracks. The quantitative analysis of the diffusion coefficients, types of motion, and cluster size obtained by fluorescence microscopy and image processing provides a valuable tool to objectively determine particle dynamics and the consequences of modifying environmental conditions. In this article we present detailed protocols for the analysis of these features. The method described here not only allows single-molecule tracking detection, but also automates the estimation of lateral diffusion parameters at the cell membrane, classifies the type of trajectory and allows complete analysis thus overcoming the difficulties in quantifying spot size over its entire trajectory at the cell membrane.


Image Processing, Computer-Assisted , Microscopy, Fluorescence/methods , Receptors, Cell Surface/metabolism , Cell Membrane/metabolism , Diffusion , Humans , Jurkat Cells
11.
J Leukoc Biol ; 104(2): 323-331, 2018 08.
Article En | MEDLINE | ID: mdl-29719064

The chemokines direct leukocyte recruitment in both homeostatic and inflammatory conditions, and are therefore critical for immune reactions. By binding to members of the class A G protein-coupled receptors, the chemokines play an essential role in numerous physiological and pathological processes. In the last quarter century, the field has accumulated much information regarding the implications of these molecules in different immune processes, as well as mechanistic insight into the signaling events activated through their binding to their receptors. Here, we will focus on chemokine receptors and how new methodological approaches have underscored the role of their conformations in chemokine functions. Advances in biophysical-based techniques show that chemokines and their receptors act in very complex networks and therefore should not be considered isolated entities. In this regard, the chemokine receptors can form homo- and heterodimers as well as oligomers at the cell surface. These findings are changing our view as to how chemokines influence cell biology, identify partners that regulate chemokine function, and open new avenues for therapeutic intervention.


Receptors, Chemokine/chemistry , Animals , Dimerization , Humans , Protein Multimerization
12.
Mol Cell ; 70(1): 106-119.e10, 2018 04 05.
Article En | MEDLINE | ID: mdl-29625032

A current challenge in cell motility studies is to understand the molecular and physical mechanisms that govern chemokine receptor nanoscale organization at the cell membrane, and their influence on cell response. Using single-particle tracking and super-resolution microscopy, we found that the chemokine receptor CXCR4 forms basal nanoclusters in resting T cells, whose extent, dynamics, and signaling strength are modulated by the orchestrated action of the actin cytoskeleton, the co-receptor CD4, and its ligand CXCL12. We identified three CXCR4 structural residues that are crucial for nanoclustering and generated an oligomerization-defective mutant that dimerized but did not form nanoclusters in response to CXCL12, which severely impaired signaling. Overall, our data provide new insights to the field of chemokine biology by showing that receptor dimerization in the absence of nanoclustering is unable to fully support CXCL12-mediated responses, including signaling and cell function in vivo.


Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement , Nanoparticles , Receptors, CXCR4/metabolism , T-Lymphocytes/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/immunology , Amino Acid Motifs , Animals , CD4 Antigens/metabolism , Cell Membrane/drug effects , Cell Membrane/immunology , Chemokine CXCL12/pharmacology , HEK293 Cells , Humans , Jurkat Cells , Ligands , Mice, Inbred C57BL , Mutation , Protein Multimerization , Protein Transport , Receptors, CXCR4/drug effects , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
13.
Methods Mol Biol ; 1407: 341-59, 2016.
Article En | MEDLINE | ID: mdl-27271913

Since the first reports on chemokine function, much information has been generated on the implications of these molecules in numerous physiological and pathological processes, as well as on the signaling events activated through their binding to receptors. As is the case for other G protein-coupled receptors, chemokine receptors are not isolated entities that are activated following ligand binding; rather, they are found as dimers and/or higher order oligomers at the cell surface, even in the absence of ligands. These complexes form platforms that can be modified by receptor expression and ligand levels, indicating that they are dynamic structures. The analysis of the conformations adopted by these receptors at the membrane and their dynamics is thus crucial for a complete understanding of the function of the chemokines. We focus here on the methodology insights of new techniques, such as those based on resonance energy transfer for the analysis of chemokine receptor conformations in living cells.


Bioluminescence Resonance Energy Transfer Techniques , Fluorescence Resonance Energy Transfer , Protein Multimerization , Receptors, Chemokine/metabolism , Chemokines/metabolism , Fluorescence Resonance Energy Transfer/methods , Gene Expression , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Binding , Receptors, Chemokine/chemistry , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
14.
Methods Enzymol ; 570: 1-18, 2016.
Article En | MEDLINE | ID: mdl-26921939

Chemokines and their receptors take part in many physiological and pathological processes, and their dysregulated expression is linked to chronic inflammatory and autoimmune diseases, immunodeficiencies, and cancer. The chemokine receptors, members of the G protein-coupled receptor family, are integral membrane proteins, with seven-transmembrane domains that bind the chemokines and transmit signals through GTP-binding proteins. Many assays used to study the structure, conformation, or activation mechanism of these receptors are based on ligand-binding measurement, as are techniques to detect new agonists and antagonists that modulate chemokine function. Such methods require labeling of the chemokine and/or its receptor, which can alter their binding characteristics. Surface plasmon resonance (SPR) is a powerful technique for analysis of the interaction between immobilized receptors and ligands in solution, in real time, and without labeling. SPR measurements nonetheless require expression and purification steps that can alter the conformation, stability, and function of the chemokine and/or the chemokine receptor. In this review, we focus on distinct methods to immobilize chemokine receptors on the surface of an optical biosensor. We expose the advantages and disadvantages of different protocols used and describe in detail the method to retain viral particles as receptor carriers that can be used for SPR determinations.


Chemokines/analysis , Immobilized Proteins/chemistry , Receptors, Chemokine/chemistry , Surface Plasmon Resonance/instrumentation , Virion/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Immobilized Proteins/metabolism , Receptors, Chemokine/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Surface Plasmon Resonance/methods , Virion/metabolism
15.
Front Immunol ; 6: 384, 2015.
Article En | MEDLINE | ID: mdl-26284069

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.

16.
J Leukoc Biol ; 98(2): 257-69, 2015 Aug.
Article En | MEDLINE | ID: mdl-25957307

Several studies in humans indicate the implication of Th17 cells in RA. Therapies targeting their pathogenicity, as well as their plasticity to the Th17/1 phenotype, could ameliorate the progression of the pathology. The neuroendocrine environment has a major impact on the differentiation of lymphoid cells. VIP is present in the microenvironment of the joint, and its known therapeutic effects are supported by several studies on RA. We examine the ability of VIP to modulate the differentiation of Th17 cells. Peripheral blood CD4(+)CD45RO(+) T cells from HD and eRA patients were expanded under Th17-polarizing conditions in the presence of TGF-ß. After 7 days, the higher IL-17A, IL-21, and IL-9 levels and lower IL-22 levels indicate the nonpathogenic profile for Th17 cells in HD. In contrast, Th17 cells from eRA patients produced significantly more IL-22 and IFN-γ, and these cells show a more Th17/1 profile, indicating a pathogenic phenotype. Interestingly, when VIP was present in the Th17 conditioned medium, increased levels of IL-10 and IL-9 were detected in HD and eRA patients. VIP also reduced the levels of IL-22 in eRA patients. These data suggest that VIP reduces the pathogenic profile of the Th17-polarized cells. This effect was accompanied by an increased in the Treg/Th17 profile, as shown by the increase levels of Foxp3. In conclusion, this report addresses a novel and interesting question on the effect of VIP on human Th17 cells and adds clinical relevance by analyzing, in parallel, HD and eRA patients.


Arthritis, Rheumatoid/immunology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Vasoactive Intestinal Peptide/pharmacology , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Case-Control Studies , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Early Diagnosis , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression , Humans , Immunologic Memory , Interferon-gamma/biosynthesis , Interferon-gamma/metabolism , Interleukin-17/biosynthesis , Interleukin-17/metabolism , Interleukin-9/biosynthesis , Interleukin-9/metabolism , Interleukins/biosynthesis , Interleukins/metabolism , Male , Middle Aged , Primary Cell Culture , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology , Transforming Growth Factor beta/pharmacology , Vasoactive Intestinal Peptide/immunology , Vasoactive Intestinal Peptide/metabolism , Interleukin-22
17.
J Immunol ; 194(11): 5509-19, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25917087

The adaptive immune response requires interaction between T cells and APC to form a specialized structure termed the immune synapse (IS). Although the TCR is essential for IS organization, other factors such as chemokines participate in this process. In this study, we show that the chemokine CXCL12-mediated signaling contributes to correct IS organization and therefore influences T cell activation. CXCR4 downregulation or blockade on T cells caused defective actin polymerization at the contact site with APC, altered microtubule-organizing center polarization and the IS structure, and reduced T cell/APC contact duration. T cell activation was thus inhibited, as shown by reduced expression of CD25 and CD69 markers and of IL-2 mRNA levels. The results indicate that, through Gi and JAK1 and 2 kinases activation, CXCL12 signaling cooperates to build the IS and to maintain adhesive contacts between APC and T cells, required for continuous TCR signaling.


Chemokine CXCL12/immunology , Immunological Synapses/immunology , Janus Kinase 1/immunology , Janus Kinase 2/immunology , Receptors, Antigen, T-Cell/immunology , Actins/metabolism , Adaptive Immunity/immunology , Animals , Antigen-Presenting Cells/immunology , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Down-Regulation , Female , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit/biosynthesis , Lectins, C-Type/biosynthesis , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA Interference , RNA, Messenger/biosynthesis , RNA, Small Interfering , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/biosynthesis , Signal Transduction/immunology
18.
Methods Mol Biol ; 1272: 173-88, 2015.
Article En | MEDLINE | ID: mdl-25563184

The G protein-coupled receptors (GPCRs) form one of the largest membrane receptor families. The nature of the ligands that interact with these receptors is highly diverse; they include light, peptides and hormones, neurotransmitters, and small molecular weight compounds. The GPCRs are involved in a wide variety of physiological processes and thus hold considerable therapeutic potential.GPCR function is usually determined in cell-based assays, whose complexity nonetheless limits their use. The use of alternative, cell-free assays is hampered by the difficulties in purifying these seven-transmembrane domain receptors without altering their functional properties. Several methods have been proposed to immobilize GPCR on biosensor surfaces which use antibodies or avidin-/biotin-based capture procedures, alone or with reconstitution of the GPCR physiological microenvironment. Here we propose a method for GPCR immobilization in their native membrane microenvironment that requires no manipulation of the target receptor and maintains the many conformations GPCR can adopt in the cell membrane.


Genetic Vectors/metabolism , Immobilized Proteins/genetics , Lentivirus/genetics , Plasmids/metabolism , Receptors, CXCR4/genetics , Vesiculovirus/genetics , Carbocyanines , Fluorescent Dyes , Gene Expression , Genetic Vectors/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immobilized Proteins/metabolism , Lentivirus/metabolism , Plasmids/chemistry , Receptors, CXCR4/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Surface Plasmon Resonance/methods , Transfection , Vesiculovirus/metabolism , Virion , Virus Assembly/genetics
19.
Proc Natl Acad Sci U S A ; 111(19): E1960-9, 2014 May 13.
Article En | MEDLINE | ID: mdl-24778234

CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.


CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Actin Depolymerizing Factors/metabolism , CD4 Antigens/chemistry , Cell Fusion , Dimerization , Flow Cytometry , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Jurkat Cells , Lim Kinases/metabolism , Protein Binding/physiology , Protein Structure, Quaternary , Receptors, CCR5/chemistry , Receptors, CXCR4/chemistry , Th1 Cells/metabolism , Th1 Cells/virology , Th2 Cells/metabolism , Th2 Cells/virology
20.
Talanta ; 109: 209-15, 2013 May 15.
Article En | MEDLINE | ID: mdl-23618162

Surface plasmon resonance (SPR)-based biosensors are established tools for measuring biomolecular interactions between unlabeled analytes in real time, and are thus an ideal method to evaluate G protein-coupled receptor (GPCR) binding interactions. Using as a vehicle lentiviral particles bearing the chemokine receptor CXCR4 in its native plasma membrane context, SPR analysis can be performed using the particles as specific receptors to monitor the CXCR4 interaction with its ligand, CXCL12. The method shows linear correlation in the 5-40 nM range, with low intra- and inter-assay variation, a relative standard deviation <10%, chip-to-chip variation <12%, with stability of the sensor response for more than 150 measurements in the same chip over a four-week period. Our objective was to develop a method for rapid detection and quantification of analytes such as CXCL12 in biological samples, with no need for pretreatment. As a proof of concept, we tested for CXCL12 in urine samples from rheumatoid arthritis patients, who have elevated levels of this chemokine in plasma and synovial fluid. The biosensor method allowed sensitive, reproducible CXCL12 detection in the physiological range, suggesting its value for the diagnosis of autoimmune disorders.


Chemokine CXCL12/urine , Receptors, CXCR4 , Surface Plasmon Resonance/methods , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/urine , Biomarkers/urine , Blotting, Western , Cell Membrane/metabolism , Chemokine CXCL12/chemistry , Flow Cytometry , HEK293 Cells , Humans , Lentivirus/genetics , Ligands , Protein Binding , Receptors, CXCR4/chemistry , Receptors, CXCR4/genetics , Surface Plasmon Resonance/instrumentation , Synovial Fluid/chemistry , Transfection , Virion/genetics
...