Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2308689, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863325

RESUMEN

Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.

2.
Front Neurol ; 15: 1346412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481939

RESUMEN

Introduction: Peripheral neuroprostheses are aimed to restore loss of sensory and motor functions by interfacing axons in the peripheral nerves. Most common interfaces in neuroprostheses are electrodes that establish electrical connection with peripheral axons. However, some challenges arise related to long-term functionality, durability, and body response. Recently, focused ultrasound stimulation (FUS) has emerged as a non-invasive approach to modulate the nervous system. However, it is controversial whether FUS can induce axon depolarization. Methods: We have assessed FUS applied in vivo to the rat peripheral nerve, with two objectives: first, to test whether FUS activates peripheral nerves under different stimulation conditions, and second, to evaluate if FUS inflicts damage to the nerve. FUS was delivered with three ultrasound transducers (Sonic Concept H115, H107, and H102) covering the largest set of parameters examined for FUS of peripheral nerves so far. Results: We did not obtain reliable evoked action potentials in either nerves or muscles, under any FUS condition applied, neither over the skin nor directly to the nerve exposed. Additional experiments ex vivo and in vivo on mice, confirmed this conclusion. When FUS stimulation was applied directly to the exposed sciatic nerve, neuromuscular function decreased significantly, and recovered one week later, except for FUS at 0.25 MHz. Histologically, degenerating nerve fibers were observed, with a tendency to be higher with the lower FUS frequency. Discussion: Past reports on the ability of ultrasound to stimulate the peripheral nerve are controversial. After testing a wide range of FUS conditions, we conclude that it is not a reliable and safe method for stimulating the peripheral nerve. Special consideration should be taken, especially when low-frequency FUS is applied, as it may lead to nerve damage.

3.
Nat Nanotechnol ; 19(4): 514-523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212522

RESUMEN

One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.


Asunto(s)
Grafito , Nanoporos , Ratas , Animales , Microelectrodos , Prótesis e Implantes , Estimulación Eléctrica
4.
Front Bioeng Biotechnol ; 9: 615218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644015

RESUMEN

Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called "Print and Shrink", which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...