Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 143: 299-307, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31539759

RESUMEN

The genetic and epigenetic stability (analysis of DNA methylation using MSAP markers) of mint (Mentha x piperita L.) apices was studied after each step of a cryopreservation protocol, by encapsulation-dehydration. The effect of the addition of an antioxidant (ascorbic acid) during one of the protocol steps was also evaluated. Eight-week old in vitro recovered shoots from apices after each step of the protocol were genetically stable when compared to control in vitro shoots, using RAPD and AFLP markers. The addition of ascorbic acid in the medium with the highest sucrose concentration did not improve recovery and did not have any effect on stability. Apices sampled immediately after each step showed increased epigenetic differences as the protocol advanced, compared to in vitro control apices, in particular related to de novo methylation events. However, after one-day in vitro recovery, methylation status was similar to control apices. To improve the quality of methylation data interpretation, a simple and fast method for MSAP markers analysis, based on R programming, has been developed which allows the statistical comparison of treatments to control samples and its graphical representation.


Asunto(s)
ADN de Plantas/genética , Mentha/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Antioxidantes/metabolismo , Criopreservación , Metilación de ADN/genética , Metilación de ADN/fisiología , Deshidratación , Epigénesis Genética/genética , Mentha/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
2.
Plant Cell Physiol ; 56(7): 1401-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25907568

RESUMEN

Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.


Asunto(s)
Brassica napus/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Polen/embriología , Transporte Biológico , Vías Biosintéticas/genética , Brassica napus/citología , Brassica napus/genética , Células Cultivadas , Cromatografía Liquida , Ácido Clofíbrico/farmacología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Calor , Espectrometría de Masas/métodos , Microscopía Confocal , Microscopía de Interferencia , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Polen/efectos de los fármacos , Polen/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/citología , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico
3.
BMC Plant Biol ; 14: 224, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25162300

RESUMEN

BACKGROUND: In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogenesis initiation and embryo development are still largely unknown. The search for molecular and cellular markers during early stages of in vitro embryogenesis constitutes an important goal to distinguish, after induction, responsive from non-responsive cells, and to elucidate the mechanisms involved in embryogenesis initiation for their efficient manipulation. In this work, we have performed a comparative analysis of two embryogenesis pathways derived from microspores and immature zygotic embryos in cork oak in order to characterize early markers of reprogrammed cells in both pathways. Rearrangements of the cell structural organization, changes in epigenetic marks, cell wall polymers modifications and endogenous auxin changes were analyzed at early embryogenesis stages of the two in vitro systems by a multidisciplinary approach. RESULTS: Results showed that early embryo cells exhibited defined changes of cell components which were similar in both embryogenesis in vitro systems, cellular features that were not found in non-embryogenic cells. DNA methylation level and nuclear pattern, proportion of esterified pectins in cell walls, and endogenous auxin levels were different in embryo cells in comparison with microspores and immature zygotic embryo cells from which embryos originated, constituting early embryogenesis markers. CONCLUSIONS: These findings suggest that DNA hypomethylation, cell wall remodeling by pectin esterification and auxin increase are involved in early in vitro embryogenesis in woody species, providing new evidences of the developmental pattern similarity between both embryogenesis pathways, from microspores and immature zygotic embryos, in woody species.


Asunto(s)
Biomarcadores/metabolismo , Polen/metabolismo , Quercus/embriología , Semillas/crecimiento & desarrollo , Diferenciación Celular , Proliferación Celular , Metilación de ADN , Esterificación , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Quercus/metabolismo , Semillas/metabolismo
4.
Cytogenet Genome Res ; 143(1-3): 209-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25060767

RESUMEN

In response to stress treatments, microspores can be reprogrammed to become totipotent cells that follow an embryogenic pathway producing haploid and double-haploid embryos which are important biotechnological tools in plant breeding. Recent studies have revealed the involvement of DNA methylation in regulating this process, but no information is available on the role of histone modifications in microspore embryogenesis. Histone modifications are major epigenetic marks controlling gene expression during plant development and in response to environmental changes. Lysine methylation of histones, accomplished by histone lysine methyltransferases (HKMTs), can occur on different lysine residues, with histone H3K9 methylation being mainly associated with transcriptionally silenced regions. In contrast, histone H3 and H4 acetylation is carried out by histone acetyltransferases (HATs) and is associated with actively transcribed genes. In this work, we analyzed 3 different histone epigenetic marks: dimethylation of H3K9 (H3K9me2) and acetylation of H3 and H4 (H3Ac and H4Ac) during microspore embryogenesis in Brassica napus by Western blot and immunofluorescence assays. The expression patterns of histone methyltransferase BnHKMT and histone acetyltransferase BnHAT genes have also been analyzed by qPCR. Our results revealed different spatial and temporal distribution patterns for methylated and acetylated histone variants during microspore embryogenesis and their similarity with the expression profiles of BnHKMT and BnHAT, respectively. The data presented suggest the participation of H3K9me2 and HKMT in embryo cell differentiation and heterochromatinization events, whereas H3Ac, H4Ac, and HAT would be involved in transcriptional activation, totipotency, and proliferation events during cell reprogramming and embryo development.


Asunto(s)
Brassica napus/genética , Diferenciación Celular/genética , Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Polen/genética , Células Madre Totipotentes/metabolismo , Acetilación , Brassica napus/metabolismo , Proliferación Celular , Haploidia , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Lisina/genética , Lisina/metabolismo , Metilación , Polen/metabolismo , Semillas/genética , Semillas/metabolismo
5.
BMC Plant Biol ; 12: 127, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22857779

RESUMEN

BACKGROUND: Microspore embryogenesis represents a unique system of single cell reprogramming in plants wherein a highly specialized cell, the microspore, by specific stress treatment, switches its fate towards an embryogenesis pathway. In Brassica napus, a model species for this phenomenon, incubation of isolated microspores at 32°C is considered to be a pre-requisite for embryogenesis induction. RESULTS: We have developed a new in vitro system at lower temperature (18°C) to efficiently induce microspore embryogenesis throughout two different developmental pathways: one involving the formation of suspensor-like structures (52.4%) and another producing multicellular embryos without suspensor (13.1%); additionally, a small proportion of non-responsive microspores followed a gametophytic-like development (34.4%) leading to mature pollen. The suspensor-like pathway followed at 18°C involved the establishment of asymmetric identities from the first microspore division and an early polarity leading to different cell fates, suspensor and embryo development, which were formed by cells with different organizations and endogenous auxin distribution, similar to zygotic embryogenesis. In addition, a new strategy for germination of microspore derived embryos was developed for achieving more than 90% conversion of embryos to plantlets, with a predominance of spontaneous doubled haploids plants. CONCLUSION: The present work reveals a novel mechanism for efficient microspore embryogenesis induction in B. napus using continuous low temperature treatment. Results indicated that low temperature applied for longer periods favours an embryogenesis pathway whose first division originates asymmetric cell identities, early polarity establishment and the formation of suspensor-like structures, mimicking zygotic embryogenesis. This new in vitro system provides a convenient tool to analyze in situ the mechanisms underlying different developmental pathways during the microspore reprogramming, breaking or not the cellular symmetry, the establishment of polarity and the developmental embryo patterning, which further produce mature embryos and plants.


Asunto(s)
Brassica napus/embriología , Frío , Ácidos Indolacéticos/metabolismo , Polen/embriología , Brassica napus/citología , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , ADN de Plantas/análisis , Desecación , Diploidia , Germinación , Haploidia , Polen/citología , Polen/genética , Polen/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...