Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 4(4): 458-475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437333

RESUMEN

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Bacterias , Neoplasias Colorrectales/metabolismo , Formiatos , Fusobacterium nucleatum , Humanos , Ratones , Microambiente Tumoral
3.
Int J Cancer ; 146(4): 895-905, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30734283

RESUMEN

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various "CAF markers", such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Microambiente Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Separación Celular/métodos , Progresión de la Enfermedad , Citometría de Flujo/métodos , Humanos , Invasividad Neoplásica/patología , Neoplasias/tratamiento farmacológico
4.
Autophagy ; 16(8): 1436-1452, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31775562

RESUMEN

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enrichedpatient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. ABBREVIATIONS: ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CQ: chloroquine; CSC: cancer stem cells; CRC: colorectal cancer; HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PRKC/PKC: protein kinase C; SQSTM1/p62: sequestosome 1; TICs: tumor-initiating cells.


Asunto(s)
Carcinogénesis/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Proteínas del Citoesqueleto/metabolismo , Progresión de la Enfermedad , Hipoxia/complicaciones , Proteína Quinasa C/metabolismo , Transducción de Señal , Animales , Autofagosomas/metabolismo , Autofagia , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/metabolismo , Autorrenovación de las Células , Colon/patología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo , Fosforilación
5.
Cancer Lett ; 450: 32-41, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30790680

RESUMEN

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches.


Asunto(s)
Hipoxia de la Célula/fisiología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Neoplasias del Colon/genética , Genes Supresores de Tumor , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esferoides Celulares , Células Tumorales Cultivadas , Regulación hacia Arriba
6.
Cancer Res ; 78(14): 3793-3808, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748374

RESUMEN

The vast majority of colorectal cancer-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different colorectal cancer cell lines and recently established primary cultures enriched in colon cancer stem cells, also known as tumor-initiating cells (TIC), to identify genes and miRNAs with regulatory functions in colorectal cancer progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, TGFß signaling activity, and reduced expression of the miR-371∼373 cluster compared with nonmetastatic cultures. TGFß receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371∼373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371∼373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371∼373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371∼373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371∼373 and ID1. Altogether, our results establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization.Significance: These findings establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel mechanism regulating self-renewal of tumor-initiating cell and metastatic colonization, potentially opening new concepts for therapeutic targeting of cancer metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3793/F1.large.jpg Cancer Res; 78(14); 3793-808. ©2018 AACR.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/patología , Proteína 1 Inhibidora de la Diferenciación/genética , MicroARNs/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Autorrenovación de las Células/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/patología
7.
Br J Cancer ; 117(11): 1689-1701, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29024942

RESUMEN

BACKGROUND: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. METHODS: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. RESULTS: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. CONCLUSIONS: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.


Asunto(s)
Neoplasias Colorrectales/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Metilación de ADN , Transición Epitelial-Mesenquimal , Humanos , Mutación , Cadenas Pesadas de Miosina/análisis , Miosina Tipo V/análisis , Pronóstico , Análisis de Matrices Tisulares , Proteínas de Unión al GTP rab/genética
8.
Oncotarget ; 7(40): 65454-65470, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27589845

RESUMEN

Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.


Asunto(s)
Colon/patología , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Hipoxia/genética , Proteínas Hierro-Azufre/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/fisiología , Anciano , Anciano de 80 o más Años , Carcinogénesis , Autorrenovación de las Células , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Proteínas Hierro-Azufre/genética , Ácido Láctico/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas
9.
PLoS One ; 11(1): e0146052, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26745821

RESUMEN

Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance.


Asunto(s)
Neoplasias del Colon/patología , Esferoides Celulares/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microscopía Fluorescente , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/citología , Análisis de Supervivencia , Transcriptoma , Trasplante Heterólogo , Células Tumorales Cultivadas
10.
Cell Cycle ; 15(1): 72-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26636483

RESUMEN

Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Animales , Células HeLa , Humanos , Ácido Láctico/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Simportadores/metabolismo
11.
Int J Pharm ; 423(1): 45-54, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21575695

RESUMEN

Invariant Natural Killer T (iNKT) cells have potent immunostimulatory activities that could be exploited for human therapies. The high-affinity CD1d antigen α-galactosylceramide analogue KRN7000 (KRN) activates a cascade of anti-tumor effector cells and clinical studies have already had some initial success. To improve the efficacy of the treatment, strategies that aim to vectorize KRN would be valuable. In this study, we intended to characterize and compare the effect of KRN encapsulated in poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs, 90nm) and microparticles instead of macroparticles (MPs, 715nm) on the iNKT cell response. Our data show that whatever the size of the particles, vectorized KRN induced potent primary activation of iNKT cells in vitro and in vivo. We show that endocytosis of PLGA-based particles by dendritic cells is mediated by a clathrin-dependent manner and that this event is important to stimulate iNKT cells. Finally, we report that KRN vectorized in NPs and MPs exhibited different behaviours in vivo in terms of iNKT cell expansion and responsiveness to a recall stimulation. Collectively, our data validate the concept that KRN encapsulated in PLGA-based particles can be used as delivery systems to activate iNKT cells in vitro and in vivo.


Asunto(s)
Galactosilceramidas/administración & dosificación , Galactosilceramidas/inmunología , Activación de Linfocitos/inmunología , Microesferas , Nanopartículas/química , Células T Asesinas Naturales/inmunología , Animales , Presentación de Antígeno/inmunología , Antineoplásicos/administración & dosificación , Antineoplásicos/inmunología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Clatrina/metabolismo , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Portadores de Fármacos/química , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Galactosilceramidas/farmacología , Interferón gamma/sangre , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Interleucina-4/sangre , Interleucina-4/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ácido Láctico/química , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Hígado/citología , Hígado/inmunología , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/metabolismo , Tamaño de la Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Electricidad Estática , Propiedades de Superficie
12.
PLoS One ; 6(10): e26919, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22066016

RESUMEN

One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α(+) and CD8α(-) cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4(-) and CD4(+) CD8α(-) cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4(-) and CD4(+) cDC are equivalent in their capacity to prime and direct CD4(+) and CD8(+) T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4(-) and CD4(+) cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4(+) counterparts, CD4(-) cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4(+) and CD4(-) cDC subsets that may be important in immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos CD8/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/citología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/citología , Bazo/citología , Animales , Linfocitos T CD4-Positivos/citología , Células Dendríticas/inmunología , Galactosilceramidas/inmunología , Células Asesinas Naturales/citología , Subgrupos Linfocitarios/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...