Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain Commun ; 3(2): fcab073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959711

RESUMEN

Alzheimer's disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer's disease. Most recently, plasma phosphorylated tau181 has shown excellent performance. The relationship between plasma phosphorylated tau181 and cerebral metabolic dysfunction assessed by [18F]fluorodeoxyglucose PET in Alzheimer's disease is still unknown. This study was performed on 892 older individuals (297 cognitively unimpaired; 595 cognitively impaired) from the Alzheimer's Disease Neuroimaging Initiative cohort. Plasma phosphorylated tau181 was assessed using single molecular array technology and metabolic dysfunction was indexed by [18F]fluorodeoxyglucose PET. Cross-sectional associations between plasma and CSF phosphorylated tau181 and [18F]fluorodeoxyglucose were assessed using voxelwise linear regression models, with individuals stratified by diagnostic group and by ß-amyloid status. Associations between baseline plasma phosphorylated tau181 and longitudinal (24 months) rate of brain metabolic decline were also assessed in 389 individuals with available data using correlations and voxelwise regression models. Plasma phosphorylated tau181 was elevated in ß-amyloid positive and cognitively impaired individuals as well as in apolipoprotein E ε4 carriers and was significantly associated with age, worse cognitive performance and CSF phosphorylated tau181. Cross-sectional analyses showed strong associations between plasma phosphorylated tau181 and [18F]fluorodeoxyglucose PET in cognitively impaired and ß-amyloid positive individuals. Voxelwise longitudinal analyses showed that baseline plasma phosphorylated tau181 concentrations were significantly associated with annual rates of metabolic decline in cognitively impaired individuals, bilaterally in the medial and lateral temporal lobes. The associations between plasma phosphorylated tau181 and reduced brain metabolism, primarily in cognitively impaired and in ß-amyloid positive individuals, supports the use of plasma phosphorylated tau181 as a simple, low-cost, minimally invasive and accessible tool to both assess current and predict future metabolic dysfunction associated with Alzheimer's disease, comparatively to PET, MRI and CSF methods.

2.
Alzheimers Res Ther ; 13(1): 69, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781319

RESUMEN

BACKGROUND: To investigate the association of plasma pTau181, assessed with a new immunoassay, with neurodegeneration of white matter and gray matter cross-sectionally and longitudinally, in aging and Alzheimer's disease. METHODS: Observational data was obtained from the Alzheimer's Disease Neuroimaging Initiative, in which participants underwent plasma assessment and magnetic resonance imaging. Based on their clinical diagnosis, participants were classified as cognitively unimpaired and cognitively impaired. Linear regressions and linear mixed-effect models were used to test the cross-sectional and longitudinal associations between baseline plasma pTau181 and neurodegeneration using voxel-based morphometry. RESULTS: We observed a negative correlation at baseline between plasma pTau181 and gray matter volume in cognitively unimpaired individuals. In cognitively impaired individuals, we observed a negative association between plasma pTau181 and both gray and white matter volume. In longitudinal analyses conducted in the cognitively unimpaired group, plasma pTau181 was negatively correlated with gray matter volume, starting 36 months after baseline assessments. Finally, in cognitively impaired individuals, plasma pTau181 concentrations were negatively correlated with both gray and white matter volume as early as 12 months after baseline, and neurodegeneration increased in an incremental manner until 48 months. CONCLUSIONS: Higher levels of plasma pTau181 correlate with neurodegeneration and predict further brain atrophy in aging and Alzheimer's disease. Plasma pTau181 may be useful in predicting AD-related neurodegeneration, comparable to positron emission tomography or cerebrospinal fluid assessment with high specificity for AD neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
3.
Brain ; 144(2): 434-449, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33479777

RESUMEN

Alzheimer's disease has a preclinical stage when cerebral amyloid-ß deposition occurs before symptoms emerge, and when amyloid-ß-targeted therapies may have maximum benefits. Existing amyloid-ß status measurement techniques, including amyloid PET and CSF testing, are difficult to deploy at scale, so blood biomarkers are increasingly considered for screening. We compared three different blood-based techniques-liquid chromatography-mass spectrometry measures of plasma amyloid-ß, and single molecule array (Simoa) measures of plasma amyloid-ß and phospho-tau181-to detect cortical 18F-florbetapir amyloid PET positivity (defined as a standardized uptake value ratio of >0.61 between a predefined cortical region of interest and eroded subcortical white matter) in dementia-free members of Insight 46, a substudy of the population-based British 1946 birth cohort. We used logistic regression models with blood biomarkers as predictors of amyloid PET status, with or without age, sex and APOE ε4 carrier status as covariates. We generated receiver operating characteristics curves and quantified areas under the curves to compare the concordance of the different blood tests with amyloid PET. We determined blood test cut-off points using Youden's index, then estimated numbers needed to screen to obtain 100 amyloid PET-positive individuals. Of the 502 individuals assessed, 441 dementia-free individuals with complete data were included; 82 (18.6%) were amyloid PET-positive. The area under the curve for amyloid PET status using a base model comprising age, sex and APOE ε4 carrier status was 0.695 (95% confidence interval: 0.628-0.762). The two best-performing Simoa plasma biomarkers were amyloid-ß42/40 (0.620; 0.548-0.691) and phospho-tau181 (0.707; 0.646-0.768), but neither outperformed the base model. Mass spectrometry plasma measures performed significantly better than any other measure (amyloid-ß1-42/1-40: 0.817; 0.770-0.864 and amyloid-ß composite: 0.820; 0.775-0.866). At a cut-off point of 0.095, mass spectrometry measures of amyloid-ß1-42/1-40 detected amyloid PET positivity with 86.6% sensitivity and 71.9% specificity. Without screening, to obtain 100 PET-positive individuals from a population with similar amyloid PET positivity prevalence to Insight 46, 543 PET scans would need to be performed. Screening using age, sex and APOE ε4 status would require 940 individuals, of whom 266 would proceed to scan. Using mass spectrometry amyloid-ß1-42/1-40 alone would reduce these numbers to 623 individuals and 243 individuals, respectively. Across a theoretical range of amyloid PET positivity prevalence of 10-50%, mass spectrometry measures of amyloid-ß1-42/1-40 would consistently reduce the numbers proceeding to scans, with greater cost savings demonstrated at lower prevalence.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/sangre , Fragmentos de Péptidos/sangre , Anciano , Enfermedad de Alzheimer/metabolismo , Biomarcadores/sangre , Diagnóstico Precoz , Femenino , Pruebas Hematológicas/métodos , Humanos , Masculino , Estudios Prospectivos , Sensibilidad y Especificidad
4.
Brain ; 144(1): 325-339, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257949

RESUMEN

Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-ß PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-ß1-42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-ß pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-ß markers reached abnormal levels, with greater rates of change correlating with increased amyloid-ß pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-ß pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-ß were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-ß, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-ß pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/sangre , Proteínas tau/sangre , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/sangre , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Fosforilación , Tomografía de Emisión de Positrones , Estudios Prospectivos , Treonina/sangre
5.
J Alzheimers Dis ; 77(3): 1129-1141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804092

RESUMEN

BACKGROUND: It is still unknown if serum glial fibrillary acidic protein (GFAP) is a useful marker in frontotemporal lobar degeneration (FTLD). OBJECTIVE: To assess the diagnostic and prognostic value of serum GFAP in a large cohort of patients with FTLD. METHODS: In this retrospective study, performed on 406 participants, we measured serum GFAP concentration with an ultrasensitive Single molecule array (Simoa) method in patients with FTLD, Alzheimer's disease (AD), and in cognitively unimpaired elderly controls. We assessed the role of GFAP as marker of disease severity by analyzing the correlation with clinical variables, neurophysiological data, and cross-sectional brain imaging. Moreover, we evaluated the role of serum GFAP as a prognostic marker of disease survival. RESULTS: We observed significantly higher levels of serum GFAP in patients with FTLD syndromes, except progressive supranuclear palsy, compared with healthy controls, but not compared with AD patients. In FTLD, serum GFAP levels correlated with measures of cognitive dysfunction and disease severity, and were associated with indirect measures of GABAergic deficit. Serum GFAP concentration was not a significant predictor of survival. CONCLUSION: Serum GFAP is increased in FTLD, correlates with cognition and GABAergic deficits, and thus shows promise as a biomarker of disease severity in FTLD.


Asunto(s)
Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Proteína Ácida Fibrilar de la Glía/sangre , Índice de Severidad de la Enfermedad , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Degeneración Lobar Frontotemporal/psicología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
6.
J Neurol Neurosurg Psychiatry ; 91(9): 960-967, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32611664

RESUMEN

OBJECTIVE: To assess the diagnostic and prognostic value of serum neurofilament light (NfL) and serum phospho-Tau181 (p-Tau181) in a large cohort of patients with frontotemporal lobar degeneration (FTLD). METHODS: In this retrospective study, performed on 417 participants, we analysed serum NfL and p-Tau181 concentrations with an ultrasensitive single molecule array (Simoa) approach. We assessed the diagnostic values of serum biomarkers in the differential diagnosis between FTLD, Alzheimer's disease (AD) and healthy ageing; their role as markers of disease severity assessing the correlation with clinical variables, cross-sectional brain imaging and neurophysiological data; their role as prognostic markers, considering their ability to predict survival probability in FTLD. RESULTS: We observed significantly higher levels of serum NfL in patients with FTLD syndromes, compared with healthy controls, and lower levels of p-Tau181 compared with patients with AD. Serum NfL concentrations showed a high accuracy in discriminating between FTLD and healthy controls (area under the curve (AUC): 0.86, p<0.001), while serum p-Tau181 showed high accuracy in differentiating FTLD from patients with AD (AUC: 0.93, p<0.001). In FTLD, serum NfL levels correlated with measures of cognitive function, disease severity and behavioural disturbances and were associated with frontotemporal atrophy and indirect measures of GABAergic deficit. Moreover, serum NfL concentrations were identified as the best predictors of survival probability. CONCLUSIONS: The assessment of serum NfL and p-Tau181 may provide a comprehensive view of FTLD, aiding in the differential diagnosis, in staging disease severity and in defining survival probability.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/diagnóstico , Proteínas de Neurofilamentos/sangre , Proteínas tau/sangre , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Neuroimagen , Fosforilación , Pronóstico , Estudios Retrospectivos , Estimulación Magnética Transcraneal
7.
Lancet Neurol ; 19(5): 422-433, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32333900

RESUMEN

BACKGROUND: CSF and PET biomarkers of amyloid ß and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy. METHODS: We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses. FINDINGS: We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid ß-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid ß-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid ß-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid ß-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid ß (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%). INTERPRETATION: Blood p-tau181 can predict tau and amyloid ß pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease. FUNDING: Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/sangre , Proteínas tau/sangre , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Fosforilación , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...