Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 187(1): 93-111, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35038743

RESUMEN

Oxoguanine glycosylase 1 (OGG1) repairs the predominant reactive oxygen species-initiated DNA lesion 8-oxoguanine. Human OGG1 polymorphisms resulting in reduced DNA repair associate with an increased risk for disorders like cancer and diabetes, but the role of OGG1 in brain development is unclear. Herein, we show that Ogg1 knockout mice at 2-3 months of age exhibit enhanced gene- and sex-dependent DNA damage (strand breaks) and decreased epigenetic DNA methylation marks (5-methylcytosine, 5-hydroxymethylcytosine), both of which were associated with increased cerebellar calbindin levels, reduced hippocampal postsynaptic function, altered body weight with age and disorders of brain function reflected in behavioral tests for goal-directed repetitive behavior, anxiety and fear, object recognition and spatial memory, motor coordination and startle response. These results suggest that OGG1 plays an important role in normal brain development, possibly via both its DNA repair activity and its role as an epigenetic modifier, with OGG1 deficiencies potentially contributing to neurodevelopmental disorders.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Animales , Encéfalo , Epigénesis Genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...