Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Nat Immunol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227514

RESUMEN

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.

2.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091805

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates Mtb infection outcomes in people living with HIV (PLWH). Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. Here, we investigated the immune responses elicited by BCG administered via intravenous (IV) or intradermal (ID) routes in Simian Immunodeficiency Virus (SIV)-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of Mtb challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic molecules, and key transcription factors. Our results showed that IV BCG induces a robust and sustained immune response, including tissue-resident memory T (TRM) cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of IV BCG-vaccinated MCM. Although IV BCG vaccination resulted in an influx of TRM cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/mL) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on IV BCG-induced protection against Mtb.

3.
Nat Commun ; 15(1): 6894, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134521

RESUMEN

SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Delta-the most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , COVID-19 , SARS-CoV-2 , Replicación Viral , Animales , Humanos , Masculino , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/farmacología , Chlorocebus aethiops , COVID-19/virología , COVID-19/inmunología , COVID-19/prevención & control , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Macaca mulatta , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Replicación Viral/efectos de los fármacos
4.
Sci Immunol ; 9(98): eadk9550, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213338

RESUMEN

Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Antígenos CD4 , Anticuerpos Anti-VIH , VIH-1 , Animales , Vacunas contra el SIDA/inmunología , Ratones , Humanos , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Antígenos CD4/inmunología , Sitios de Unión/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Vacunación , Anticuerpos Monoclonales/inmunología , Femenino
5.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38903070

RESUMEN

Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights: Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.

6.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895320

RESUMEN

An alternative to lifelong antiretroviral therapy (ART) is needed to achieve durable control of HIV-1. Here we show that adeno-associated virus (AAV)-delivery of two rhesus macaque antibodies to the SIV envelope glycoprotein (Env) with potent neutralization and antibody-dependent cellular cytotoxicity can prevent viral rebound in macaques infected with barcoded SIVmac239M after discontinuing suppressive ART. Following AAV administration, sustained antibody expression with minimal anti-drug antibody responses was achieved in all but one animal. After ART withdrawal, SIV replication rebounded within two weeks in all of the control animals but remained below the threshold of detection in plasma (<15 copies/mL) for more than a year in four of the eight animals that received AAV vectors encoding Env-specific antibodies. Viral sequences from animals with delayed rebound exhibited restricted barcode diversity and antibody escape. Thus, sustained expression of antibodies with potent antiviral activity can afford durable, ART-free containment of pathogenic SIV infection.

7.
Front Immunol ; 15: 1385850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726014

RESUMEN

Introduction: Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi. While most patients are asymptomatic, around 30% develop Chronic Chagasic Cardiomyopathy (CCC). Methods: Here, we employed high-dimensional flow cytometry to analyze CD4+ T and B cell compartments in patients during the chronic phase of Chagas disease, presenting the asymptomatic and mild or moderate/severe cardiac clinical forms. Results: Effector CD27-CD4+ T cells were expanded in both CCC groups, and only mild CCC patients showed higher frequencies of effector memory and T follicular helper (Tfh) cells than healthy donors (CTL) and asymptomatic patients. Unsupervised analysis confirmed these findings and further revealed the expansion of a specific subpopulation composed of Tfh, transitional, and central memory CD4+ T cells bearing a phenotype associated with strong activation, differentiation, and exhaustion in patients with mild but not moderate/severe CCC. In contrast, patients with mild and moderate/severe CCC had lower frequencies of CD4+ T cells expressing lower levels of activation markers, suggesting resting status, than CTL. Regarding the B cell compartment, no alterations were found in naïve CD21-, memory cells expressing IgM or IgD, marginal zone, and plasma cells in patients with Chagas disease. However, expansion of class-switched activated and atypical memory B cells was observed in all clinical forms, and more substantially in mild CCC patients. Discussion: Taken together, our results showed that T. cruzi infection triggers changes in CD4+ T and B cell compartments that are more pronounced in the mild CCC clinical form, suggesting an orchestrated cellular communication during Chagas disease. Conclusion: Overall, these findings reinforce the heterogeneity and complexity of the immune response in patients with chronic Chagas disease and may provide new insights into disease pathology and potential markers to guide clinical decisions.


Asunto(s)
Linfocitos T CD4-Positivos , Cardiomiopatía Chagásica , Humanos , Cardiomiopatía Chagásica/inmunología , Masculino , Persona de Mediana Edad , Femenino , Linfocitos T CD4-Positivos/inmunología , Adulto , Linfocitos B/inmunología , Trypanosoma cruzi/inmunología , Enfermedad Crónica , Anciano , Activación de Linfocitos/inmunología
8.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798646

RESUMEN

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αß+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.

9.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587077

RESUMEN

To unravel the heterogeneity and molecular signature of effector memory Th2 cells (Tem2), we analyzed 23 individuals' PBMCs of filaria-infected (Filaria+) and 24 healthy volunteers (Filaria-), with or without coincident house dust mite (HDM) allergic sensitization. Flow cytometry revealed 3 CD4+ Tem subsets - CCR4+CCR6+CRTH2- Tem17, CCR4+CCR6-CRTH2+ Tem2, and CCR6+CCR4+CRTH2+ Tem17.2 - markedly enriched in Filaria+ individuals. These subsets were sorted and analyzed by multiomic single-cell RNA immunoprofiling. SingleR-annotated Th2 cells from Tem2 and Tem17.2 cell subsets had features of pathogenic Th2 effector cells based on their transcriptional signatures, with downregulated CD27 and elevated expression levels of ITGA4, IL17RB, HPGDS, KLRB1, PTGDR2, IL9R, IL4, IL5, and IL13 genes. When the Filaria+ individuals were subdivided based on their allergic status, Tem2 cells in HDM+Filaria+ individuals showed an overall reduction in TCR diversity, suggesting the occurrence of antigen-driven clonal expansion. Moreover, HDM+Filaria+ individuals showed not only an expansion in the frequency of both Tem2 and Tem17.2 cell subsets, but also a change in their molecular program by overexpressing GATA3, IL17RB, CLRF2, and KLRB1, as well as increased antigen-induced IL-4, IL-5, and IL-13 production, suggesting that aeroallergens reshape the transcriptional and functional programming of Th2 cell subsets in human filarial infection toward a pathogenic immunophenotype.


Asunto(s)
Hipersensibilidad , Subgrupos de Linfocitos T , Animales , Humanos , Células Th2 , Alérgenos , Pyroglyphidae
10.
Front Immunol ; 15: 1359679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529287

RESUMEN

Understanding the immunological control of pathogens requires a detailed evaluation of the mechanistic contributions of individual cell types within the immune system. While knockout mouse models that lack certain cell types have been used to help define the role of those cells, the biological and physiological characteristics of mice do not necessarily recapitulate that of a human. To overcome some of these differences, studies often look towards nonhuman primates (NHPs) due to their close phylogenetic relationship to humans. To evaluate the immunological role of select cell types, the NHP model provides distinct advantages since NHP more closely mirror the disease manifestations and immunological characteristics of humans. However, many of the experimental manipulations routinely used in mice (e.g., gene knock-out) cannot be used with the NHP model. As an alternative, the in vivo infusion of monoclonal antibodies that target surface proteins on specific cells to either functionally inhibit or deplete cells can be a useful tool. Such depleting antibodies have been used in NHP studies to address immunological mechanisms of action. In these studies, the extent of depletion has generally been reported for blood, but not thoroughly assessed in tissues. Here, we evaluated four depleting regimens that primarily target T cells in NHP: anti-CD4, anti-CD8α, anti-CD8ß, and immunotoxin-conjugated anti-CD3. We evaluated these treatments in healthy unvaccinated and IV BCG-vaccinated NHP to measure the extent that vaccine-elicited T cells - which may be activated, increased in number, or resident in specific tissues - are depleted compared to resting populations in unvaccinated NHPs. We report quantitative measurements of in vivo depletion at multiple tissue sites providing insight into the range of cell types depleted by a given mAb. While we found substantial depletion of target cell types in blood and tissue of many animals, residual cells remained, often residing within tissue. Notably, we find that animal-to-animal variation is substantial and consequently studies that use these reagents should be powered accordingly.


Asunto(s)
Anticuerpos Monoclonales , Linfocitos T , Animales , Humanos , Ratones , Filogenia , Anticuerpos Monoclonales/farmacología , Primates
11.
NPJ Vaccines ; 9(1): 58, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467663

RESUMEN

Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.

12.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321182

RESUMEN

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Vacunas , Humanos , Animales , Macaca mulatta , Intestino Delgado
15.
Cell Rep ; 43(2): 113706, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38294906

RESUMEN

Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.


Asunto(s)
Filoviridae , Infecciones por Orthomyxoviridae , Animales , Humanos , Inmunoinformática , Macaca , Antivirales
16.
Nat Biomed Eng ; 8(3): 209-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123663
17.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38076895

RESUMEN

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

18.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986823

RESUMEN

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

19.
Nat Med ; 29(10): 2535-2546, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783968

RESUMEN

The main barrier to HIV cure is a persistent reservoir of latently infected CD4+ T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir. In this study, we investigated the effects of AZD5582 in combination with four SIV Env-specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) in SIV-infected, ART-suppressed rhesus macaques. Here we confirm the efficacy of AZD5582 in inducing SIV reactivation, demonstrate enhancement of latency reversal when AZD5582 is used in combination with N-803 and show a reduction in total and replication-competent SIV-DNA in lymph-node-derived CD4+ T cells in macaques treated with AZD5582 + RhmAbs. Further exploration of this therapeutic approach may contribute to the goal of achieving an HIV cure.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Virus de la Inmunodeficiencia de los Simios/fisiología , Macaca mulatta , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico , Latencia del Virus , Replicación Viral , Anticuerpos/uso terapéutico , Ganglios Linfáticos , Linfocitos T CD4-Positivos , Carga Viral
20.
Nat Microbiol ; 8(11): 2080-2092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814073

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Tuberculosis , Animales , Humanos , Vacuna BCG , Macaca mulatta , Leucocitos Mononucleares , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA