Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 34(8): 10699-10719, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32584506

RESUMEN

Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel ß subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.


Asunto(s)
Aclorhidria/genética , Aclorhidria/mortalidad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/mortalidad , Canales de Potasio con Entrada de Voltaje/genética , Animales , Bacteroides/crecimiento & desarrollo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/mortalidad , Femenino , Ácido Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Eliminación de Gen , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Riesgo
2.
FASEB J ; 33(9): 9762-9774, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162977

RESUMEN

The KCNE2 single transmembrane-spanning voltage-gated potassium (Kv) channel ß subunit is ubiquitously expressed and essential for normal function of a variety of cell types, often via regulation of the KCNQ1 Kv channel. A polymorphism upstream of KCNE2 is associated with reduced lung function in human populations, but the pulmonary consequences of KCNE2 gene disruption are unknown. Here, germline deletion of mouse Kcne2 reduced pulmonary expression of potassium channel α subunits Kcnq1 and Kcnb1 but did not alter expression of other Kcne genes. Kcne2 colocalized and coimmunoprecipitated with Kcnq1 in mouse lungs, suggesting the formation of pulmonary Kcnq1-Kcne2 potassium channel complexes. Kcne2 deletion reduced blood O2, increased CO2, increased pulmonary apoptosis, and increased inflammatory mediators TNF-α, IL-6, and leukocytes in bronchoalveolar lavage (BAL) fluids. Consistent with increased pulmonary vascular leakage, Kcne2 deletion increased plasma, BAL albumin, and the BAL:plasma albumin concentration ratio. Kcne2-/- mouse lungs exhibited baseline induction of the reperfusion injury salvage kinase pathway but were less able to respond via this pathway to imposed pulmonary ischemia/reperfusion injury (IRI). We conclude that KCNE2 regulates KCNQ1 in the lungs and is required for normal lung function and resistance to pulmonary IRI. Our data support a causal relationship between KCNE2 gene disruption and lung dysfunction.-Zhou, L., Köhncke, C., Hu, Z., Roepke, T. K., Abbott, G. W. The KCNE2 potassium channel ß subunit is required for normal lung function and resilience to ischemia and reperfusion injury.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Lesión Pulmonar/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Daño por Reperfusión/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Femenino , Mutación de Línea Germinal , Inflamación/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Canales de Potasio con Entrada de Voltaje/genética , Daño por Reperfusión/genética , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo
3.
FASEB J ; 33(2): 2537-2552, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30289750

RESUMEN

KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (KV) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout ( Kcne5-/0) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5+/0 mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte KV current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current ( Ito,f). The current increases arose from an apex-specific increase in slow transient outward current-1 ( IKslow,1) (conducted by KV1.5) and Ito,f (conducted by KV4) and an increase in IKslow,2 (conducted by KV2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where KV2.1 was also detected in both Kcne5-/0 and Kcne5+/0 mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and KV2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases IK,slow2 by reducing KV2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of KV2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in KV2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of KV2.1 in mouse heart. Increased KV current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS.-David, J.-P., Lisewski, U., Crump, S. M., Jepps, T. A., Bocksteins, E., Wilck, N., Lossie, J., Roepke, T. K., Schmitt, N., Abbott, G. W. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia.


Asunto(s)
Fibrilación Atrial/complicaciones , Síndrome de Brugada/complicaciones , Genes Ligados a X , Activación del Canal Iónico , Miocitos Cardíacos/patología , Canales de Potasio con Entrada de Voltaje/fisiología , Taquicardia Ventricular/etiología , Animales , Fibrilación Atrial/genética , Síndrome de Brugada/genética , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Eliminación de Secuencia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
5.
FASEB J ; 30(7): 2476-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26985008

RESUMEN

Hyperaldosteronism is associated with an increased prevalence of atrial fibrillation (AF). Mutations in KCNE3 have been associated with AF, and Kcne3(-/-) mice exhibit hyperaldosteronism. In this study, we used recently developed Kcne3(-/-) mice to study atrial electrophysiology with respect to development of aldosterone-dependent AF. In invasive electrophysiology studies, Kcne3(-/-) mice displayed a reduced atrial effective refractory period (AERP) and inducible episodes of paroxysmal AF. The cellular arrhythmogenic correlate for AF predisposition was a significant increase in atrial Kv currents generated by the micromolar 4-aminopyridine-sensitive Kv current encoded by Kv1.5. Electrophysiological alterations in Kcne3(-/-) mice were aldosterone dependent and were associated with increased Rab4, -5, and -9-dependent recycling of Kv1.5 channels to the Z-disc/T-tubulus region and lateral membrane via activation of the Akt/AS160 pathway. Treatment with spironolactone inhibited Akt/AS160 phosphorylation, reduced Rab-dependent Kv1.5 recycling, normalized AERP and atrial Kv currents to the wild-type level, and reduced arrhythmia induction in Kcne3(-/-) mice. Kcne3 deletion in mice predisposes to AF by a heretofore unrecognized mechanism-namely, increased aldosterone-dependent Kv1.5 recycling via Rab GTPases. The findings uncover detailed molecular mechanisms underpinning a channelopathy-linked form of AF and emphasize the inevitability of considering extracardiac mechanisms in genetic arrhythmia syndromes.-Lisewski, U., Koehncke, C., Wilck, N., Buschmeyer, B., Pieske, B., Roepke, T. K. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3(-/-) mice.


Asunto(s)
Aldosterona/metabolismo , Fibrilación Atrial/etiología , Canal de Potasio Kv1.5/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Glándulas Suprarrenales/patología , Animales , Fenómenos Electrofisiológicos , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica/fisiología , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Canal de Potasio Kv1.5/genética , Proteínas de la Membrana , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , Proteínas Proto-Oncogénicas c-akt , Espironolactona/farmacología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Sci Rep ; 6: 23118, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26984260

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an increasing health problem worldwide, with genetic, epigenetic, and environmental components. Here, we describe the first example of NAFLD caused by genetic disruption of a mammalian potassium channel subunit. Mice with germline deletion of the KCNE2 potassium channel ß subunit exhibited NAFLD as early as postnatal day 7. Using mouse genetics, histology, liver damage assays and transcriptomics we discovered that iron deficiency arising from KCNE2-dependent achlorhydria is a major factor in early-onset NAFLD in Kcne2(─/─) mice, while two other KCNE2-dependent defects did not initiate NAFLD. The findings uncover a novel genetic basis for NAFLD and an unexpected potential factor in human KCNE2-associated cardiovascular pathologies, including atherosclerosis.


Asunto(s)
Anemia Ferropénica/complicaciones , Enfermedad del Hígado Graso no Alcohólico/etiología , Canales de Potasio con Entrada de Voltaje/genética , Animales , Proteína C-Reactiva/análisis , Dieta Alta en Grasa , Femenino , Redes Reguladoras de Genes , Mutación de Línea Germinal , Homocisteína/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Canales de Potasio con Entrada de Voltaje/deficiencia , Canales de Potasio con Entrada de Voltaje/metabolismo , Eliminación de Secuencia , Transcriptoma , Triglicéridos/sangre
7.
Heart Vessels ; 31(8): 1380-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26686371

RESUMEN

Cardiac function is one important determinant to maintain tissue oxygenation and is thus highly regulated. In this context, it is interesting that centrally mediated opioidergic influence on cardiac function has long been known. Only recently, KOR and DOR have been found to be expressed in healthy left ventricular myocardium in rats and colocalized with parts of the excitation-contraction-coupling system. However, several comments in literature exist doubting the existence of MOR in cardiac tissue. We, therefore, aimed to detect MOR in rat left ventricular cardiomyocytes, and to evaluate whether MOR and POMC are regulated during heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics and the existence of MOR and POMC was investigated by means of radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Membrane MOR selective binding sites were detected in the left ventricular myocardium, however, they were lower in abundance than KOR- and DOR-specific binding sites and B max of MOR could not be determined. In left ventricular cardiomyocytes, MOR colocalized with parts of the excitation-coupling mechanism, e.g., Cav1.2 of the cell membrane and invaginated T-tubules as well as the ryanodine receptor of the sarcoplasmatic reticulum. More importantly, MOR strongly colocalized with mitochondria of left ventricular cardiomyocytes. Volume overload was not associated with an altered expression of MOR and POMC on both mRNA and protein level. These findings provide evidence for the existence of MOR on the cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular cardiomyocytes in rats. However, heart failure does not result in an altered expression of the cardiac MOR-opioid system. Thus, MOR agonist treatment-commonly used in the clinical setting-might directly affect cardiac function, which needs to be evaluated in greater detail in the near future.


Asunto(s)
Membrana Celular/genética , Insuficiencia Cardíaca/genética , Mitocondrias/genética , Miocitos Cardíacos/metabolismo , Receptores Opioides mu/genética , Retículo Sarcoplasmático/genética , Animales , Modelos Animales de Enfermedad , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Masculino , Ratas , Ratas Wistar , Análisis de Regresión
8.
Pharmacol Res ; 102: 33-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26365878

RESUMEN

Opioids have long been known for their analgesic effects and are therefore widely used in anesthesia and intensive care medicine. However, in the last decade research has focused on the opioidergic influence on cardiovascular function. This project thus aimed to detect the precise cellular localization of kappa opioid receptors (KOR) in left ventricular cardiomyocytes and to investigate putative changes in KOR and its endogenous ligand precursor peptide prodynorphin (PDYN) in response to heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics. In addition, the existence and localization as well as adaptive changes of KOR and PDYN were investigated using radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Similar to the brain and spinal cord, [(3)H]U-69593 KOR selective binding sites were detected the left ventricle (LV). KOR colocalized with Cav1.2 of the outer plasma membrane and invaginated T-tubules and intracellular with the ryanodine receptor of the sarcoplasmatic reticulum. Interestingly, KOR could also be detected in mitochondria of rat LV cardiomyocytes. As a consequence of heart failure, KOR and PDYN were up-regulated on the mRNA and protein level in the LV. These findings suggest that the cardiac kappa opioidergic system might modulate rat cardiomyocyte function during heart failure.


Asunto(s)
Volumen Cardíaco/fisiología , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Receptores Opioides kappa/metabolismo , Regulación hacia Arriba/fisiología , Animales , Bencenoacetamidas/farmacología , Canales de Calcio Tipo L/metabolismo , Volumen Cardíaco/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/patología , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Pirrolidinas/farmacología , Ratas , Ratas Wistar , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-25520848

RESUMEN

UNLABELLED: Neuroendocrine tumours (NETs) represent a broad spectrum of tumours, of which the serotonin-producing carcinoid is the most common and has been shown to cause right ventricular heart failure. However, an association between heart failure and NETs other than carcinoid has not been established so far. In this case report, we describe a 51-year-old patient with a glucagon-producing NET of the pancreas who developed acute heart failure and even cardiogenic shock despite therapy. Heart failure eventually regressed after initialising i.v. treatment with the somatostatin analogue octreotide. Chromogranin A as a tumour marker was shown to be significantly elevated, and it decreased with clinical improvement of the patient. The effects of long-time stimulation of glucagon on the myocardium have not been studied yet; however, sarcoplasmic reticulum calcium leak can be discussed as a possible mechanism for glucagon-induced heart failure. LEARNING POINTS: Glucagonoma can be a cause for heart failure.i.v. infusion of octreotide can be successfully used to treat glucagonoma-induced acute heart failure.We suggest that cardiac function should be monitored in all NET patients.

10.
Sci Signal ; 7(315): ra22, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24595108

RESUMEN

Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel ß subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Simportadores/metabolismo , Animales , Células CHO , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Inositol/sangre , Espectrometría de Masas , Metaboloma , Ratones , Ratones Noqueados , Microscopía Electrónica , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Xenopus laevis
11.
J Vis Exp ; (73): e50145, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23524949

RESUMEN

KCNE genes encode for a small family of Kv channel ancillary subunits that form heteromeric complexes with Kv channel alpha subunits to modify their functional properties. Mutations in KCNE genes have been found in patients with cardiac arrhythmias such as the long QT syndrome and/or atrial fibrillation. However, the precise molecular pathophysiology that leads to these diseases remains elusive. In previous studies the electrophysiological properties of the disease causing mutations in these genes have mostly been studied in heterologous expression systems and we cannot be sure if the reported effects can directly be translated into native cardiomyocytes. In our laboratory we therefore use a different approach. We directly study the effects of KCNE gene deletion in isolated cardiomyocytes from knockout mice by cellular electrophysiology - a unique technique that we describe in this issue of the Journal of Visualized Experiments. The hearts from genetically engineered KCNE mice are rapidly excised and mounted onto a Langendorff apparatus by aortic cannulation. Free Ca(2+) in the myocardium is bound by EGTA, and dissociation of cardiac myocytes is then achieved by retrograde perfusion of the coronary arteries with a specialized low Ca(2+) buffer containing collagenase. Atria, free right ventricular wall and the left ventricle can then be separated by microsurgical techniques. Calcium is then slowly added back to isolated cardiomyocytes in a multiple step comprising washing procedure. Atrial and ventricular cardiomyocytes of healthy appearance with no spontaneous contractions are then immediately subjected to electrophysiological analyses by patch clamp technique or other biochemical analyses within the first 6 hours following isolation.


Asunto(s)
Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Calcio/metabolismo , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ratones , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/análisis
12.
FASEB J ; 25(12): 4264-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21859894

RESUMEN

Cerebrospinal fluid (CSF) is crucial for normal function and mechanical protection of the CNS. The choroid plexus epithelium (CPe) is primarily responsible for secreting CSF and regulating its composition by mechanisms currently not fully understood. Previously, the heteromeric KCNQ1-KCNE2 K(+) channel was functionally linked to epithelial processes including gastric acid secretion and thyroid hormone biosynthesis. Here, using Kcne2(-/-) tissue as a negative control, we found cerebral expression of KCNE2 to be markedly enriched in the CPe apical membrane, where we also discovered expression of KCNQ1. Targeted Kcne2 gene deletion in C57B6 mice increased CPe outward K(+) current 2-fold. The Kcne2 deletion-enhanced portion of the current was inhibited by XE991 (10 µM) and margatoxin (10 µM) but not by dendrotoxin (100 nM), indicating that it arose from augmentation of KCNQ subfamily and KCNA3 but not KCNA1 K(+) channel activity. Kcne2 deletion in C57B6 mice also altered the polarity of CPe KCNQ1 and KCNA3 trafficking, hyperpolarized the CPe membrane by 9 ± 2 mV, and increased CSF [Cl(-)] by 14% compared with wild-type mice. These findings constitute the first report of CPe dysfunction caused by cation channel gene disruption and suggest that KCNE2 influences blood-CSF anion flux by regulating KCNQ1 and KCNA3 in the CPe.


Asunto(s)
Plexo Coroideo/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio Kv1.3/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Cloruros/sangre , Cloruros/líquido cefalorraquídeo , Epitelio/metabolismo , Transporte Iónico , Canal de Potasio KCNQ1/química , Canal de Potasio Kv1.3/química , Potenciales de la Membrana , Ratones , Ratones Noqueados , Modelos Biológicos , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/deficiencia , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína
13.
FASEB J ; 25(2): 727-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21084694

RESUMEN

Targeted deletion of the Kcne2 potassium channel ß subunit gene ablates gastric acid secretion and predisposes to gastric neoplasia in mice. Here, we discovered that Kcne2 deletion basolaterally reroutes the Kcnq1 α subunit in vivo in parietal cells (PCs), in which the normally apical location of the Kcnq1-Kcne2 channel facilitates its essential role in gastric acid secretion. Quantitative RT-PCR and Western blotting revealed that Kcne2 deletion remodeled fundic Kcne3 (2.9±0.8-fold mRNA increase, n=10; 5.3±0.4-fold protein increase, n=7) but not Kcne1, 4, or 5, and resulted in basolateral Kcnq1-Kcne3 complex formation in Kcne2(-/-) PCs. Concomitant targeted deletion of Kcne3 (creating Kcne2(-/-)Kcne3(-/-) mice) restored PC apical Kcnq1 localization without Kcne1, 4, or 5 remodeling (assessed by quantitative RT-PCR; n=5-10), indicating Kcne3 actively, basolaterally rerouted Kcnq1 in Kcne2(-/-) PCs. Despite this, Kcne3 deletion exacerbated gastric hyperplasia in Kcne2(-/-) mice, and both hypochlorhydria and hyperplasia in Kcne2(+/-) mice, suggesting that Kcne3 up-regulation was beneficial in Kcne2-depleted PCs. The findings reveal, in vivo, Kcne-dependent α subunit polarized trafficking and the existence and consequences of potassium channel ß subunit remodeling.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Canal de Potasio KCNQ1/metabolismo , Transporte de Proteínas/fisiología , Animales , Femenino , Eliminación de Gen , Hiperplasia/genética , Hiperplasia/patología , Canal de Potasio KCNQ1/genética , Masculino , Ratones , Células Parietales Gástricas/metabolismo , Subunidades de Proteína , Estómago/patología , Gastropatías/genética , Gastropatías/patología
14.
Int J Biochem Cell Biol ; 42(11): 1767-70, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20688187

RESUMEN

Inherited Long QT Syndrome (LQTS), a cardiac arrhythmia that predisposes to the often lethal ventricular fibrillation, is commonly linked to mutations in KCNQ1. The KCNQ1 voltage-gated K(+) channel α subunit passes ventricular myocyte K(+) current that helps bring a timely end to each heart-beat. KCNQ1, like many K(+) channel α subunits, is regulated by KCNE ß subunits, inherited mutations in which also associate with LQTS. KCNQ1 and KCNE mutations are also associated with atrial fibrillation. It has long been known that thyroid status strongly influences cardiac function, and that thyroid dysfunction causes abnormal cardiac structure and rhythm. We recently discovered that KCNQ1 and KCNE2 form a thyroid-stimulating hormone-stimulated K(+) channel in the thyroid that is required for normal thyroid hormone biosynthesis. Here, we review this novel genetic link between cardiac and thyroid physiology and pathology, and its potential influence upon future therapeutic strategies in cardiac and thyroid disease.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Enfermedades de la Tiroides/genética , Enfermedades de la Tiroides/fisiopatología , Animales , Arritmias Cardíacas/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Humanos , Hipertiroidismo/genética , Hipertiroidismo/metabolismo , Hipertiroidismo/fisiopatología , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hipotiroidismo/fisiopatología , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Canales de Potasio con Entrada de Voltaje/genética , Enfermedades de la Tiroides/metabolismo
15.
PLoS One ; 5(7): e11451, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20625512

RESUMEN

Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 alpha subunit and the KCNE2 beta subunit provide a K(+) efflux current to facilitate gastric acid secretion by the apical H(+)K(+)ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2(-/-) mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2(-/-) mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia.


Asunto(s)
Gastritis/etiología , Gastritis/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Neoplasias Gástricas/etiología , Neoplasias Gástricas/genética , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Técnica del Anticuerpo Fluorescente , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Eliminación de Gen , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Humanos , Inmunohistoquímica , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Metaplasia/genética , Metaplasia/metabolismo , Ratones , Ratones Mutantes , Péptidos/genética , Péptidos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Factor Trefoil-2
16.
Nat Med ; 15(10): 1186-94, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19767733

RESUMEN

Thyroid dysfunction is a global health concern, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that the potassium channel subunits KCNQ1 and KCNE2 form a thyroid-stimulating hormone-stimulated, constitutively active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 in mice impaired thyroid iodide accumulation up to eightfold, impaired maternal milk ejection, halved milk tetraiodothyronine (T4) content and halved litter size. Kcne2-deficient mice had hypothyroidism, dwarfism, alopecia, goiter and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by triiodothyronine (T3) and T4 administration to pups, by supplementing dams with T(4) before and after they gave birth or by feeding the pups exclusively from Kcne2+/+ dams; conversely, these symptoms were elicited in Kcne2+/+ pups by feeding exclusively from Kcne2-/- dams. These data provide a new potential therapeutic target for thyroid disorders and raise the possibility of an endocrine component to previously identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/genética , Eliminación de Secuencia , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cruzamientos Genéticos , Heterocigoto , Homocigoto , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Lactancia/genética , Lactancia/metabolismo , Ratones , Ratones Noqueados , Leche/metabolismo , Miocitos Cardíacos/metabolismo , Glándula Tiroides/ultraestructura , Hormonas Tiroideas/genética , Triyodotironina/genética , Triyodotironina/metabolismo
18.
J Membr Biol ; 228(1): 1-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19219384

RESUMEN

Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Western Blotting , Células CHO , Cricetinae , Cricetulus , Electrofisiología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Mutación , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shab/genética
19.
Cardiovasc Res ; 82(3): 430-8, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19202166

RESUMEN

AIMS: KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. METHODS AND RESULTS: Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. CONCLUSION: The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.


Asunto(s)
Clatrina/metabolismo , Dinaminas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Células COS , Chlorocebus aethiops , Endocitosis , Cobayas , Humanos , Potenciales de la Membrana , Miocardio/metabolismo
20.
FASEB J ; 22(10): 3648-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18603586

RESUMEN

Mutations in human KCNE2, which encodes the MiRP1 potassium channel ancillary subunit, associate with long QT syndrome (LQTS), a defect in ventricular repolarization. The precise cardiac role of MiRP1 remains controversial, in part, because it has marked functional promiscuity in vitro. Here, we disrupted the murine kcne2 gene to define the role of MiRP1 in murine ventricles. kcne2 disruption prolonged ventricular action potential duration (APD), suggestive of reduced repolarization capacity. Accordingly, kcne2 (-/-) ventricles exhibited a 50% reduction in I(K,slow1), generated by Kv1.5--a previously unknown partner for MiRP1. I(to,f), generated by Kv4 alpha subunits, was also diminished, by approximately 25%. Ventricular MiRP1 protein coimmunoprecipitated with native Kv1.5 and Kv4.2 but not Kv1.4 or Kv4.3. Unexpectedly, kcne2 (-/-) ventricular membrane fractions exhibited 50% less mature Kv1.5 protein than wild type, and disruption of Kv1.5 trafficking to the intercalated discs. Consistent with the reduction in ventricular K(+) currents and prolonged ventricular APD, kcne2 deletion lengthened the QT(c) under sevoflurane anesthesia. Thus, targeted disruption of kcne2 has revealed a novel cardiac partner for MiRP1, a novel role for MiRPs in alpha subunit targeting in vivo, and a role for MiRP1 in murine ventricular repolarization with parallels to that proposed for the human heart.


Asunto(s)
Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/fisiopatología , Síndrome de QT Prolongado/fisiopatología , Canales de Potasio con Entrada de Voltaje/metabolismo , Eliminación de Secuencia , Anestésicos por Inhalación/farmacología , Animales , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Inmunoprecipitación , Canal de Potasio Kv1.5/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Éteres Metílicos/farmacología , Ratones , Ratones Mutantes , Células Musculares/metabolismo , Células Musculares/patología , Canales de Potasio con Entrada de Voltaje/genética , Sevoflurano , Canales de Potasio Shal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...