Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 233: 119785, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863278

RESUMEN

Many European lakes have suffered from reed die-back since the 1950s. Previous studies have concluded that this is due to a combination of several interacting factors, but possibly also a single threat with high impact might be responsible for the phenomenon. In this study, we investigated 14 lakes in the Berlin area differing in reed development and sulphate concentration from 2000 to 2020. To unravel the decline of reed beds in some of the lakes with coal mining activities in the upper watershed, we compiled a comprehensive data set. Thus, the littoral zone of the lakes was divided into 1302 segments considering the reed ratio relative to segment area, water quality parameters, littoral characteristics and bank usage of the lakes which all have been monitored for 20 years. We ran two-way panel regressions with a within estimator to consider the spatial variation between and within the segments over time. The regression results revealed a strong negative relationship between reed ratio and sulphate concentrations (p<0.001) as well as tree shading (p<0.001) and a strong positive relationship with brushwood fascines (p<0.001). Taking only sulphate into account, reeds would have covered an additional area of 5.5 ha or 22.6% in 2020 (total reed area: 24.3 ha) in the absence of increased sulphate concentrations. In conclusion, changes in water quality upstream the catchment cannot be ignored in the development of management plans for downstream lakes.


Asunto(s)
Ecosistema , Lagos , Sulfatos , Calidad del Agua , Árboles , Monitoreo del Ambiente
2.
J Environ Manage ; 311: 114808, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245841

RESUMEN

Acidification and salinisation of groundwater and surface water bodies are worldwide problems in post-mining landscapes due to acid mine drainage (AMD). In this study, we hypothesised that highly decomposed peat offers a suitable substrate for mitigating AMD pollution of water bodies and that hydraulic load affects the removal efficiency of iron and sulphate. A lysimeter experiment was conducted mimicking peatland rewetting to quantify iron and sulphate removal and pH changes at different loading rates. The low initial pH of 4 rose to 6 and electrical conductivity declined by up to 47%. The initially high concentrations of iron (>250 mg/L) and sulphate (>770 mg/L) declined by, on average, 87 and 78%, respectively. The removal efficiency of sulphate was negatively correlated with either the hydraulic or the sulphate load, respectively, i. e. the lower the hydraulic load, the higher the removal efficiency of sulphate. However, the removal of iron was not explained by the load. The results imply that desulphurication and thus subsequent precipitation of iron sulphides was the main removal process and that peatland rewetting is an effective measure to mitigate AMD pollution of freshwater systems. For the heavily AMD-polluted studied section of the River Spree, we estimated by combining experimental with field data that a sulphate load reduction of the river by about 20% (36,827 tons/yr) will occur if all peatlands in the sub-catchment (6067 ha; 6.7% of the total area) are rewetted. Future investigations must show if the pollutant removal is declining over time in decomposed peat layers due to acidification and/or lack of bioavailable carbon and how the rewetting of peatland with AMD will affect the restoration of their ecosystem functioning in the long term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...