Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115289

RESUMEN

The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.

2.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985540

RESUMEN

Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.


Asunto(s)
Caenorhabditis elegans , Cromosomas , Meiosis , Complejo Sinaptonémico , Animales , Meiosis/genética , Caenorhabditis elegans/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Cromosomas/metabolismo , Cromosomas/genética , Segregación Cromosómica , Pez Cebra/genética , Humanos
3.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979327

RESUMEN

The synaptonemal complex (SC) is a meiotic interface that assembles between parental chromosomes and is essential for the formation of gametes. While the dimensions and ultrastructure of the SC are conserved across eukaryotes, its protein components are highly divergent. Recently, an unexpected component of the SC has been described in the nematode C. elegans: the Skp1-related proteins SKR-1/2, which are components of the Skp1, Cullin, F-box (SCF) ubiquitin ligase. Here, we find that the role of SKR-1 in the SC is conserved in nematodes. The P. pacificus Skp1 ortholog, Ppa-SKR-1, colocalizes with other SC proteins throughout meiotic prophase, where it occupies the middle of the SC. Like in C. elegans, the dimerization interface of Ppa-SKR-1 is required for its SC function. A dimerization mutant, Ppa-skr-1 F105E , fails to assemble SC and is almost completely sterile. Interestingly, the evolutionary trajectory of SKR-1 contrasts with other SC proteins. Unlike most SC proteins, SKR-1 is highly conserved in nematodes. Our results suggest that the structural role of SKR-1 in the SC has been conserved since the common ancestor of C. elegans and P. pacificus, and that rapidly evolving SC proteins have maintained the ability to interact with SKR-1 for at least 100 million years.

4.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895449

RESUMEN

Genomic approaches have provided detailed insight into chromosome architecture. However, commonly deployed techniques do not preserve connectivity-based information, leaving large-scale genome organization poorly characterized. Here, we developed CheC-PLS: a proximity-labeling technique that indelibly marks, and then decodes, protein-associated sites. CheC-PLS tethers dam methyltransferase to a protein of interest, followed by Nanopore sequencing to identify methylated bases - indicative of in vivo proximity - along reads >100kb. As proof-of-concept we analyzed, in budding yeast, a cohesin-based meiotic backbone that organizes chromatin into an array of loops. Our data recapitulates previously obtained association patterns, and, importantly, exposes variability between cells. Single read data reveals cohesin translocation on DNA and, by anchoring reads onto unique regions, we define the internal organization of the ribosomal DNA locus. Our versatile technique, which we also deployed on isolated nuclei with nanobodies, promises to illuminate diverse chromosomal processes by describing the in vivo conformations of single chromosomes.

5.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38513719

RESUMEN

Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.


Asunto(s)
Caenorhabditis elegans , Epigénesis Genética , Evolución Molecular , Animales , Caenorhabditis elegans/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histona Metiltransferasas/metabolismo , Histona Metiltransferasas/genética , Nematodos/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(50): e2314335120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055743

RESUMEN

Successful chromosome segregation into gametes depends on tightly regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here, we describe a genetic interaction in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3, and SYP-4. We identified the interaction through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors suggest a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underlie meiotic chromosome interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Meiosis/genética , Emparejamiento Cromosómico , Proteínas Nucleares/metabolismo
7.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662357

RESUMEN

Successful chromosome segregation into gametes depends on tightly-regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here we describe a novel interaction interface in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3 and SYP-4. We identified the interface through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors point to a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underly meiotic chromosome interactions.

8.
Mol Biol Cell ; 34(10): tp2, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590933

RESUMEN

Condensates have emerged as a new way to understand how cells are organized, and have been invoked to play crucial roles in essentially all cellular processes. In this view, the cell is occupied by numerous assemblies, each composed of member proteins and nucleic acids that preferentially interact with each other. However, available visual representations of condensates fail to communicate the growing body of knowledge about how condensates form and function. The resulting focus on only a subset of the potential implications of condensates can skew interpretations of results and hinder the generation of new hypotheses. Here we summarize the discussion from a workshop that brought together cell biologists, visualization and computation specialists, and other experts who specialize in thinking about space and ways to represent it. We place the recent advances in condensate research in a historical perspective that describes evolving views of the cell; highlight different attributes of condensates that are not well-served by current visual conventions; and survey potential approaches to overcome these challenges. An important theme of these discussions is that the new understanding on the roles of condensates exposes broader challenges in visual representations that apply to cell biological research more generally.

9.
PLoS Genet ; 19(7): e1010822, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37471284

RESUMEN

The successful delivery of genetic material to gametes requires tightly regulated interactions between the parental chromosomes. Central to this regulation is a conserved chromosomal interface called the synaptonemal complex (SC), which brings the parental chromosomes in close proximity along their length. While many of its components are known, the interfaces that mediate the assembly of the SC remain a mystery. Here, we survey findings from different model systems while focusing on insight gained in the nematode C. elegans. We synthesize our current understanding of the structure, dynamics, and biophysical properties of the SC and propose mechanisms for SC assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans , Complejo Sinaptonémico , Animales , Complejo Sinaptonémico/genética , Caenorhabditis elegans/genética , Meiosis , Emparejamiento Cromosómico , Proteínas de Caenorhabditis elegans/genética
10.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697255

RESUMEN

During meiosis, programmed double-strand DNA breaks are repaired to form exchanges between the parental chromosomes called crossovers. Chromosomes lacking a crossover fail to segregate accurately into the gametes, leading to aneuploidy. In addition to engaging the homolog, crossover formation requires the promotion of exchanges, rather than non-exchanges, as repair products. However, the mechanism underlying this meiosis-specific preference is not fully understood. Here, we study the regulation of meiotic sister chromatid exchanges in Caenorhabditis elegans by direct visualization. We find that a conserved chromosomal interface that promotes exchanges between the parental chromosomes, the synaptonemal complex, can also promote exchanges between the sister chromatids. In both cases, exchanges depend on the recruitment of the same set of pro-exchange factors to repair sites. Surprisingly, although the synaptonemal complex usually assembles between the two DNA molecules undergoing an exchange, its activity does not rely on a specific chromosome conformation. This suggests that the synaptonemal complex regulates exchanges-both crossovers and sister exchanges-by establishing a nuclear domain conducive to nearby recruitment of exchange-promoting factors.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Complejo Sinaptonémico/genética , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , ADN
11.
Curr Biol ; 32(18): 3925-3938.e6, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35963240

RESUMEN

Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids tyrosine and phenylalanine, which facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to develop these associations due to their ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner-fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.


Asunto(s)
Simbiosis , Gorgojos , Aminoácidos Aromáticos , Animales , Bacterias/genética , Insectos/microbiología , Fenilalanina , Filogenia , Tirosina , Gorgojos/genética
12.
STAR Protoc ; 3(2): 101344, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35509971

RESUMEN

Reciprocal exchanges between genetically identical sister chromatids (sister chromatid exchanges or SCEs) have been challenging to study. Here, we describe a protocol that utilizes a pulse/chase of the thymidine analog 5-ethyl-3'-deoxyuridine (EdU) in combination with click chemistry and antibody labeling to selectively label sister chromatids in the C. elegans germline. Labeling has no discernable effects on meiosis, allowing for cytological quantification of SCEs. This protocol can be combined with a variety of imaging approaches, including STED, confocal and super-resolution. For complete details on the use and execution of this protocol, please refer to Almanzar et al. (2021).


Asunto(s)
Caenorhabditis elegans , Desoxiuridina/química , Intercambio de Cromátides Hermanas , Animales , Caenorhabditis elegans/genética , Células Germinativas , Meiosis , Nucleótidos
13.
Elife ; 102021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787570

RESUMEN

Functional requirements constrain protein evolution, commonly manifesting in a conserved amino acid sequence. Here, we extend this idea to secondary structural features by tracking their conservation in essential meiotic proteins with highly diverged sequences. The synaptonemal complex (SC) is a ~100-nm-wide ladder-like meiotic structure present in all eukaryotic clades, where it aligns parental chromosomes and regulates exchanges between them. Despite the conserved ultrastructure and functions of the SC, SC proteins are highly divergent within Caenorhabditis. However, SC proteins have highly conserved length and coiled-coil domain structure. We found the same unconventional conservation signature in Drosophila and mammals, and used it to identify a novel SC protein in Pristionchus pacificus, Ppa-SYP-1. Our work suggests that coiled-coils play wide-ranging roles in the structure and function of the SC, and more broadly, that expanding sequence analysis beyond measures of per-site similarity can enhance our understanding of protein evolution and function.


Asunto(s)
Caenorhabditis elegans/química , Drosophila melanogaster/química , Complejo Sinaptonémico/química , Animales , Rabdítidos/química , Especificidad de la Especie , Relación Estructura-Actividad
14.
Chromosoma ; 130(4): 237-250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608541

RESUMEN

Alignment of the parental chromosomes during meiotic prophase is key to the formation of genetic exchanges, or crossovers, and consequently to the successful production of gametes. In almost all studied organisms, alignment involves synapsis: the assembly of a conserved inter-chromosomal interface called the synaptonemal complex (SC). While the SC usually synapses homologous sequences, it can assemble between heterologous sequences. However, little is known about the regulation of heterologous synapsis. Here, we study the dynamics of heterologous synapsis in the nematode C. elegans. We characterize two experimental scenarios: SC assembly onto a folded-back chromosome that cannot pair with its homologous partner; and synapsis of pseudo-homologs, a fusion chromosome partnering with an unfused chromosome half its size. We observed elevated levels of heterologous synapsis when the number of meiotic double-strand breaks or crossovers were reduced, indicating that the promiscuity of synapsis is regulated by break formation or repair. In addition, our data suggests the existence of both chromosome-specific and nucleus-wide regulation on heterologous synapsis.


Asunto(s)
Caenorhabditis elegans , Meiosis , Animales , Caenorhabditis elegans/genética , Emparejamiento Cromosómico , Intercambio Genético , Sinapsis , Complejo Sinaptonémico/genética
15.
J Phys Chem B ; 125(23): 6162-6170, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34097417

RESUMEN

Biomolecules are distributed within cells by molecular-scale diffusion and binding events that are invisible in standard fluorescence microscopy. These molecular search kinetics are key to understanding nuclear signaling and chromosome organization and can be directly observed by single-molecule tracking microscopy. Here, we report a method to track individual proteins within intact C. elegans gonads and apply it to study the molecular dynamics of the axis, a proteinaceous backbone that organizes meiotic chromosomes. Using either fluorescent proteins or enzymatically ligated dyes, we obtain multisecond trajectories with a localization precision of 15-25 nm in nuclei actively undergoing meiosis. Correlation with a reference channel allows for accurate measurement of protein dynamics, compensating for movements of the nuclei and chromosomes within the gonad. We find that axis proteins exhibit either static binding to chromatin or free diffusion in the nucleoplasm, and we separately quantify the motion parameters of these distinct populations. Freely diffusing axis proteins selectively explore chromatin-rich regions, suggesting they are circumventing the central phase-separated region of the nucleus. This work demonstrates that single-molecule microscopy can infer nanoscale-resolution dynamics within living tissue, expanding the possible applications of this approach.


Asunto(s)
Caenorhabditis elegans , Imagen Individual de Molécula , Animales , Caenorhabditis elegans/genética , Cromatina , Gónadas , Microscopía Fluorescente
16.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34037217

RESUMEN

The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.


Asunto(s)
Intercambio Genético , Meiosis , Cromosomas/genética
17.
Curr Biol ; 31(7): 1499-1507.e3, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33740426

RESUMEN

Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.


Asunto(s)
Caenorhabditis elegans , Meiosis , Intercambio de Cromátides Hermanas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Cromátides/genética , Roturas del ADN de Doble Cadena , Reparación del ADN
18.
PLoS Genet ; 17(3): e1009205, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730019

RESUMEN

During sexual reproduction the parental homologous chromosomes find each other (pair) and align along their lengths by integrating local sequence homology with large-scale contiguity, thereby allowing for precise exchange of genetic information. The Synaptonemal Complex (SC) is a conserved zipper-like structure that assembles between the homologous chromosomes, bringing them together and regulating exchanges between them. However, the molecular mechanisms by which the SC carries out these functions remain poorly understood. Here we isolated and characterized two mutations in the dimerization interface in the middle of the SC zipper in C. elegans. The mutations perturb both chromosome alignment and the regulation of genetic exchanges. Underlying the chromosome-scale phenotypes are distinct alterations to the way SC subunits interact with one another. We propose a model whereby the SC brings homologous chromosomes together through two activities: obligate zipping that prevents assembly on unpaired chromosomes; and a tendency to extend pairing interactions along the entire length of the chromosomes.


Asunto(s)
Emparejamiento Cromosómico , Intercambio Genético , Meiosis/genética , Complejo Sinaptonémico , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/ultraestructura
19.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32211899

RESUMEN

The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Recombinación Genética/genética , Complejo Sinaptonémico/genética , Animales , Emparejamiento Cromosómico/genética , Cromosomas/genética , Intercambio Genético/genética , Meiosis/genética , Mutación/genética
20.
Elife ; 62017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045371

RESUMEN

The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure 'crosslink' the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins.


Asunto(s)
Cromosomas/metabolismo , Intercambio Genético , Cristales Líquidos/química , Meiosis , Recombinasas/metabolismo , Complejo Sinaptonémico/química , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA