Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2393-2402, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152866

RESUMEN

MicroRNAs (miRNAs) are important modulators of thermogenic brown adipose tissue (BAT). They have been involved in its differentiation and hence its functioning. While different regulators of the miRNA machinery have been shown to be essential for BAT differentiation, little is known about their implication in BAT activation. The aim of this work was to evaluate the role of AGO2, the chief miRNA mediator, in BAT activation. We took advantage of two non-genetic models of BAT activation to analyze the miRNA machinery and miRNA expression in BAT. We used principal component analysis (PCA) to obtain an overview of miRNA expression according to the BAT activation state. In vitro, we examined AGO2 expression during brown adipocyte differentiation and activation. Finally, we downregulated AGO2 to reveal its potential role in the thermogenic function of brown adipocytes. PCA analysis allowed to cluster animals on their miRNA signature in active BAT. Moreover, hierarchical clustering showed a positive correlation between global upregulation of miRNA expression and active BAT. Consistently, the miRNA machinery, particularly AGO2, was upregulated in vivo in active BAT and in vitro in mature brown adipocytes. Finally, the partial loss-of-function of AGO2 in mature brown adipocytes is sufficient to lead to a diminished expression of UCP1 associated to a decreased uncoupled respiration. Therefore, our study shows the potential contribution of AGO2 in BAT activation. Since BAT is a calorie-burning tissue these data have a translational potential in terms of therapeutic target in the field of altered fuel homeostasis associated to obesity and diabetes.


Asunto(s)
Proteínas Argonautas/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Proteínas Argonautas/antagonistas & inhibidores , Proteínas Argonautas/genética , Diferenciación Celular , MicroARNs/metabolismo , Mitocondrias/metabolismo , Análisis de Componente Principal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Tubulina (Proteína)/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
BMC Med ; 15(1): 37, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28228143

RESUMEN

BACKGROUND: Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach. METHODS: We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity. RESULTS: We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation. CONCLUSIONS: These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.


Asunto(s)
Índice de Masa Corporal , Obesidad/enzimología , alfa-Amilasas Pancreáticas/metabolismo , alfa-Amilasas Salivales/metabolismo , Niño , Femenino , Humanos , Estudios Longitudinales , Masculino , Biología de Sistemas
3.
Diabetes ; 66(3): 627-639, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27927722

RESUMEN

Epidemiological and animal studies show that deleterious maternal environments predispose aging offspring to metabolic disorders and type 2 diabetes. Young progenies in a rat model of maternal low-protein (LP) diet are normoglycemic despite collapsed insulin secretion. However, without further worsening of the insulin secretion defect, glucose homeostasis deteriorates in aging LP descendants. Here we report that normoglycemic and insulinopenic 3-month-old LP progeny shows increased body temperature and energy dissipation in association with enhanced brown adipose tissue (BAT) activity. In addition, it is protected against a cold challenge and high-fat diet (HFD)-induced obesity with associated insulin resistance and hyperglycemia. Surgical BAT ablation in 3-month-old LP offspring normalizes body temperature and causes postprandial hyperglycemia. At 10 months, BAT activity declines in LP progeny with the appearance of reduced protection to HFD-induced obesity; at 18 months, LP progeny displays a BAT activity comparable to control offspring and insulin resistance and hyperglycemia occur. Together our findings identify BAT as a decisive physiological determinant of the onset of metabolic dysregulation in offspring predisposed to altered ß-cell function and hyperglycemia and place it as a critical regulator of fetal programming of adult metabolic disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación de la Temperatura Corporal , Dieta con Restricción de Proteínas , Metabolismo Energético , Desarrollo Fetal , Hiperglucemia/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , Tejido Adiposo Pardo/cirugía , Factores de Edad , Animales , Glucemia/metabolismo , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Femenino , Prueba de Tolerancia a la Glucosa , Homeostasis , Inmunohistoquímica , Insulina/metabolismo , Lipólisis , Masculino , Periodo Posprandial , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA