Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Front Nutr ; 11: 1274356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840696

RESUMEN

Background: The relationship between adiposity and pain is complex. Excess weight increases the risk for chronic musculoskeletal pain (CMP), driven by increased biomechanical load and low-grade systemic inflammation. Pain limits physical function, impacting energy balance contributing to weight gain. The primary aims of this study were to profile pain characteristics in participants with overweight or obesity and determine if weight loss through dietary-induced energy restriction, and presence of CMP, or magnitude of weight loss, was associated with changes in adiposity, pain, functional mobility, and inflammation. Methods: This was a secondary analysis of data from adults (25-65 years) with overweight or obesity (BMI 27.5-34.9 kg/m2) enrolled in a 3-month, 30% energy-restricted dietary intervention to induce weight loss (January 2019-March 2021). Anthropometric measures (weight, waist circumference and fat mass), pain prevalence, pain severity (McGill Pain Questionnaire, MPQ), pain intensity (Visual Analog Scale, VAS), functional mobility (timed up and go, TUG) and inflammation (high sensitivity C-Reactive Protein, hsCRP) were assessed at baseline and 3-months. Results: One hundred and ten participants completed the intervention and had weight and pain assessed at both baseline and 3-months. Participants lost 7.0 ± 0.3 kg, representing 7.9% ± 3.7% of body mass. At 3-months, functional mobility improved (TUG -0.2 ± 0.1 s, 95% CI -0.3, -0.1), but there was no change in hsCRP. Compared to baseline, fewer participants reported CMP at 3-months (n = 56, 51% to n = 27, 25%, p < 0.001) and presence of multisite pain decreased from 22.7% to 10.9% (p < 0.001). Improvements in anthropometric measures and functional mobility did not differ between those presenting with or without CMP at baseline. Improvements in pain were not related to the magnitude of weight loss. Conclusion: Weight loss was effective in reducing pain prevalence and improving functional mobility, emphasizing the importance of considering weight-loss as a key component of pain management. Clinical trial registration: identifier, ACTRN12618001861246.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38896583

RESUMEN

Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.


Asunto(s)
Antibacterianos , Fucosiltransferasas , Galactósido 2-alfa-L-Fucosiltransferasa , Microbioma Gastrointestinal , Probióticos , Animales , Ratones , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Probióticos/administración & dosificación , Antibacterianos/farmacología , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo , Polisacáridos/metabolismo , Interacciones Microbiota-Huesped , Ratones Endogámicos C57BL , Ratones Noqueados , Bifidobacterium/genética , Bifidobacterium/metabolismo
4.
J Nutr ; 154(5): 1582-1587, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521191

RESUMEN

BACKGROUND: Iron deficiency is the most common nutritional deficiency worldwide, particularly for young children and females of reproductive age. Although oral iron supplements are routinely recommended and generally considered safe, iron supplementation has been shown to alter the fecal microbiota in low-income countries. Little is known about the effect of iron supplementation on the fecal microbiota in high-income settings. OBJECTIVES: To assess the effect of oral iron supplementation compared with placebo on the gut microbiome in nonpregnant females of reproductive age in a high-income country. METHODS: A 21-d prospective parallel design double-blind, randomized control trial conducted in South Australia, Australia. Females (18-45 y) were randomly assigned to either iron (65.7 mg ferrous fumarate) or placebo. Fecal samples were collected prior to commencing supplements and after 21 d of supplementation. The primary outcome was microbiota ß-diversity (paired-sample weighted unique fraction metric dissimilarity) between treatment and placebo groups after 21 d of supplementation. Exploratory outcomes included changes in the relative abundance of bacterial taxa. RESULTS: Of 82 females randomly assigned, 80 completed the trial. There was no significant difference between the groups for weighted unique fraction metric dissimilarity (mean difference: 0.003; 95% confidence interval: -0.007, 0.014; P = 0.52) or relative abundance of common bacterial taxa or Escherichia-Shigella (q > 0.05). CONCLUSIONS: Iron supplementation did not affect the microbiome of nonpregnant females of reproductive age in Australia. This trial was registered at clinicaltrials.gov as NCT05033483.


Asunto(s)
Suplementos Dietéticos , Heces , Microbioma Gastrointestinal , Humanos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Adulto , Método Doble Ciego , Adulto Joven , Heces/microbiología , Adolescente , Hierro/administración & dosificación , Hierro/farmacología , Persona de Mediana Edad , Australia del Sur , Anemia Ferropénica , Estudios Prospectivos
6.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245513

RESUMEN

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Animales , Humanos , Ratones , Adenoma/diagnóstico , Adenoma/terapia , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Escherichia coli/genética , Estudios Prospectivos , Salicilatos , Método Doble Ciego
7.
Lancet Reg Health West Pac ; 43: 100966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169944

RESUMEN

Background: Oropharyngeal carriage of Neisseria meningitidis is frequent during adolescence, representing a major source of invasive meningococcal disease. This study examined the impact of a serogroup B vaccination (Bexsero, GSK 4CMenB) programme on adolescent N. meningitidis carriage using genomic data. Methods: A total 34,489 oropharyngeal samples were collected as part of a state-wide cluster randomised-controlled trial in South Australia during 2017 and 2018 (NCT03089086). Samples were screened for the presence of N. meningitidis DNA by porA PCR prior to culture. Whole genome sequencing was performed on all 1772 N. meningitidis culture isolates and their genomes were analysed. Findings: Unencapsulated meningococci were predominant at baseline (36.3% of isolates), followed by MenB (31.0%), and MenY (20.5%). Most MenB were ST-6058 from hyperinvasive cc41/44, or ST-32 and ST-2870 from cc32. For MenY, ST-23 and ST-1655 from cc23 were prevalent. Meningococcal carriage was mostly unchanged due to the vaccination programme; however, a significant reduction in ST-53 capsule-null meningococci prevalence was observed in 2018 compared to 2017 (OR = 0.52; 95% CI: 0.30-0.87, p = 0.0106). This effect was larger in the vaccinated compared to the control group (OR = 0.37; 95% CI: 0.12-0.98, p = 0.0368). Interpretation: While deployment of the 4CMenB vaccination did not alter the carriage of hyperinvasive MenB in the vaccinated population, it altered the carriage of other N. meningitidis sequence types following the vaccination program. Our findings suggest 4CMenB vaccination is unlikely to reduce transmission of hyperinvasive N. meningitidis strains and therefore ongoing targeted vaccination is likely a more effective public health intervention. Funding: This work was funded by GlaxoSmithKline Biologicals SA.

8.
Brain Behav Immun ; 116: 404-418, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142919

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Enfermedad de Huntington/terapia , Enfermedad de Huntington/genética , Ratones Transgénicos , ARN Ribosómico 16S , Cognición , Modelos Animales de Enfermedad , Fibras de la Dieta
10.
Obesity (Silver Spring) ; 31(10): 2467-2481, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37621033

RESUMEN

OBJECTIVE: This study evaluated weight and cardiometabolic outcomes after a 3-month energy-restricted diet (-30%) containing almonds (almond-enriched diet [AED]) or containing carbohydrate-rich snacks (nut-free control diet [NFD]) (Phase 1), followed by 6 months of weight maintenance (Phase 2). METHODS: Participants (25-65 years old) with overweight or obesity (BMI 27.5-34.9 kg/m2 ) were randomly allocated to AED (n = 68) or NFD (n = 72). RESULTS: Both groups lost weight during Phase 1 (p < 0.001) (mean [SE], -7.0 [0.5] kg AED vs. -7.0 [0.5] kg NFD, p = 0.858) and Phase 2 (p = 0.009) (-1.1 [0.5] kg AED vs. -1.3 [0.6] NFD, p = 0.756), with improvements in percentage lean mass after Phase 2 (4.8% [0.3%], p < 0.001). Reductions occurred in fasting glucose (-0.2 [0.07] mmol/L, p = 0.003), insulin (-8.1 [4.0] pmol/L, p = 0.036), blood pressure (-4.9 [0.8] mm Hg systolic, -5.0 [0.5] mm Hg diastolic, p < 0.001), total cholesterol (-0.3 [0.1] mmol/L), low-density lipoprotein (LDL) (-0.2 [0.1] mmol/L), very low-density lipoprotein (-0.1 [0.03] mmol/L), and triglycerides (-0.3 [0.06] mmol/L) (all p < 0.001), and high-density lipoprotein increased (0.1 [0.02] mmol/L, p = 0.011) by the end of Phase 2 in both groups. There were group by time interactions for lipoprotein particle concentrations: very small triglyceride-rich (-31.0 [7.7] nmol/L AED vs. -4.8 [7.9] nmol/L NFD, p = 0.007), small LDL (-109.3 [40.5] nmol/L AED vs. -20.7 [41.6] nmol/L NFD, p = 0.017), and medium LDL (-24.4 [43.4] nmol/L AED vs. -130.5 [44.4] nmol/L NFD, p = 0.045). CONCLUSIONS: An energy-restricted AED resulted in weight loss and weight loss maintenance comparable to an energy-restricted NFD, and both diets supported cardiometabolic health. The AED resulted in greater improvements in some lipoprotein subfractions, which may enhance reductions in cardiovascular risk.


Asunto(s)
Enfermedades Cardiovasculares , Prunus dulcis , Humanos , Adulto , Persona de Mediana Edad , Anciano , Bocadillos , Glucosa , Lipoproteínas LDL , Enfermedades Cardiovasculares/prevención & control
11.
Nutrients ; 15(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37630835

RESUMEN

The impact of a Mediterranean diet on the intestinal microbiome has been linked to its health benefits. We aim to evaluate the effects of a Mediterranean diet supplemented with dairy foods on the gut microbiome in Australians at risk of cardiovascular disease. In a randomised controlled cross-over study, 34 adults with a systolic blood pressure ≥120 mmHg and with risk factors for cardiovascular disease were randomly allocated to a Mediterranean diet with 3-4 daily serves of dairy foods (Australian recommended daily intake (RDI) of 1000-1300 mg per day (MedDairy)) or a low-fat (LFD) control diet. Between each 8-week diet, participants underwent an 8-week washout period. Microbiota characteristics of stool samples collected at the start and end of each diet period were determined by 16S rRNA amplicon sequencing. MedDairy-associated effects on bacterial relative abundance were correlated with clinical, anthropometric, and cognitive outcomes. No change in the overall faecal microbial structure or composition was observed with either diet (p > 0.05). The MedDairy diet was associated with changes in the relative abundance of several bacterial taxa, including an increase in Butyricicoccus and a decrease in Colinsella and Veillonella (p < 0.05). Increases in Butyricicoccus relative abundance over 8 weeks were inversely correlated with lower systolic blood pressure (r = -0.38, p = 0.026) and positively correlated with changes in fasting glucose levels (r = 0.39, p = 0.019), specifically for the MedDairy group. No significant associations were observed between the altered taxa and anthropometric or cognitive measures (p > 0.05). Compared to a low-fat control diet, the MedDairy diet resulted in changes in the abundance of specific gut bacteria, which were associated with clinical outcomes in adults at risk of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Dieta Mediterránea , Microbioma Gastrointestinal , Hipotensión , Adulto , Humanos , Estudios Cruzados , ARN Ribosómico 16S , Australia , Suplementos Dietéticos , Enfermedades Cardiovasculares/prevención & control , Clostridiaceae
12.
BMC Geriatr ; 23(1): 521, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641010

RESUMEN

BACKGROUND: The emergence of antimicrobial-resistant bacteria represents a considerable threat to human health, particularly for vulnerable populations such as those living in residential aged care. However, antimicrobial resistance carriage and modes of transmission remain incompletely understood. The Generating evidence on antimicrobial Resistance in the Aged Care Environment (GRACE) study was established to determine principal risk factors of antimicrobial resistance carriage and transmission in residential aged care facilities (RACFs). This article describes the cohort characteristics, national representation, and planned analyses for this study. METHODS: Between March 2019 and March 2020, 279 participants were recruited from five South Australian RACFs. The median age was 88.6 years, the median period in residence was 681 days, and 71.7% were female. A dementia diagnosis was recorded in 54.5% and more than two thirds had moderate to severe cognitive impairment (68.8%). 61% had received at least one course of antibiotics in the 12 months prior to enrolment. RESULTS: To investigate the representation of the GRACE cohort to Australians in residential aged care, its characteristics were compared to a subset of the historical cohort of the Registry of Senior Australians (ROSA). This included 142,923 individuals who were permanent residents of RACFs on June 30th, 2017. GRACE and ROSA cohorts were similar in age, sex, and duration of residential care, prevalence of health conditions, and recorded dementia diagnoses. Differences were observed in care requirements and antibiotic exposure (both higher for GRACE participants). GRACE participants had fewer hospital visits compared to the ROSA cohort, and a smaller proportion were prescribed psycholeptic medications. CONCLUSIONS: We have assembled a cohort of aged care residents that is representative of the Australian aged care population, and which provides a basis for future analyses. Metagenomic data isolated from participants and built environments will be used to determine microbiome and resistome characteristics of an individual and the facility. Individual and facility risk exposures will be aligned with metagenomic data to identify principal determinants for antimicrobial resistance carriage. Ultimately, this analysis will inform measures aimed at reducing the emergence and spread of antimicrobial resistant pathogens in this high-risk population.


Asunto(s)
Antibacterianos , Demencia , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Australia , Farmacorresistencia Bacteriana , Factores de Edad , Demencia/diagnóstico , Demencia/tratamiento farmacológico , Demencia/epidemiología
13.
Microbiol Spectr ; 11(4): e0083123, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347185

RESUMEN

Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intestinal commensal microbiology and whether any such changes affected systemic immune and metabolic regulation. In healthy adults exposed to 4 weeks of low-dose erythromycin or azithromycin, as used clinically, we observed consistent shifts in gut microbiome composition, with a reduction in microbial capacity related to carbohydrate metabolism and short-chain fatty acid biosynthesis. These changes were accompanied by alterations in systemic biomarkers relating to immune (interleukin 5 [IL-5], IL-10, monocyte chemoattractant protein 1 [MCP-1]) and metabolic (serotonin [5-HT], C-peptide) homeostasis. Transplantation of erythromycin-exposed murine microbiota into germ-free mice demonstrated that changes in metabolic homeostasis and gastrointestinal motility, but not systemic immune regulation, resulted from changes in intestinal microbiology caused by macrolide treatment. Our findings highlight the potential for long-term low-dose macrolide therapy to influence host physiology via alteration of the gut microbiome. IMPORTANCE Long-term macrolide therapy is widely used in chronic respiratory diseases although its antibacterial activity can also affect the gut microbiota, a key regulator of host physiology. Macrolide-associated studies on the gut microbiota have been limited to short antibiotic courses and have not examined its consequences for host immune and metabolic regulation. This study revealed that long-term macrolides depleted keystone bacteria and impacted host regulation, mediated directly by macrolide activity or indirectly by alterations to the gut microbiota. Understanding these macrolide-associated mechanisms will contribute to identifying the risk of long-term exposure and highlights the importance of targeted therapy for maintenance of the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Respiratorias , Animales , Ratones , Macrólidos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Eritromicina/farmacología , Enfermedades Respiratorias/tratamiento farmacológico
14.
Int J Infect Dis ; 134: 168-171, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343782

RESUMEN

Multidrug-resistant organisms (MDROs) are a major international health threat. In many low and middle-income countries poorly regulated antibiotic use, limited surveillance, and inadequate sanitation give rise to high rates of antibiotic resistance. A resulting reliance on last-line antibiotic options further contributes to the emergence of MDROs. The potential for these pathogens to spread across international borders is a matter of considerable concern. However, this problem is commonly framed as primarily a threat to the health security of countries where resistance is not yet endemic. In fact, it is little acknowledged that those at greatest risk from antibiotic treatment failure are individuals who move from regions of high MDRO prevalence to settings where standard empirical treatment options remain largely effective. In this perspective, we highlight the poor treatment outcomes for disseminated bacterial infections in individuals who have moved from settings in which MDROs are common to those where MDROs are currently less common. We discuss MDRO screening strategies that could avoid stigmatizing vulnerable populations by focusing on future risk of disseminated infection, rather than past risk of acquisition. In practical terms, this means screening individuals before childbirth, immunosuppressive treatments, major surgery, or other events associated with disseminated infection risk, rather than prioritizing screening for individuals from regions with high carriage rates. We argue that such measures would reduce antibiotic treatment failure and improve outcomes while protecting migrant populations from the divisive consequences of targeted screening programs.


Asunto(s)
Infecciones Bacterianas , Infecciones , Migrantes , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones/tratamiento farmacológico , Infecciones Bacterianas/tratamiento farmacológico , Bacterias Gramnegativas
15.
Front Pediatr ; 11: 1146089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205223

RESUMEN

Objectives: We aimed to compare the effects of nutrient-enriched formula with standard term formula on rate of body weight gain of late preterm infants appropriately grown for gestational age. Study design: A multi-center, randomized, controlled trial. Late preterm infants (34-37 weeks' gestation), with weight appropriate for gestational age (AGA), were randomized to nutrient enriched formula (NEF) with increased calories (22 kcal/30 ml) from protein, added bovine milk fat globule membrane, vitamin D and butyrate or standard term formula 20 kcal/30 ml (STF). Breastfed term infants were enrolled as an observational reference group (BFR). Primary outcome was rate of body weight gain from enrollment to 120 days corrected age (d/CA). Planned sample size was 100 infants per group. Secondary outcomes included body composition, weight, head circumference and length gain, and medically confirmed adverse events to 365 d/CA. Results: The trial was terminated early due to recruitment challenges and sample size was substantially reduced. 40 infants were randomized to NEF (n = 22) and STF (n = 18). 39 infants were enrolled in the BFR group. At 120 d/CA there was no evidence of a difference in weight gain between randomized groups (mean difference 1.77 g/day, 95% CI, -1.63 to 5.18, P = 0.31). Secondary outcomes showed a significant reduction in risk of infectious illness in the NEF group at 120 d/CA [relative risk 0.37 (95% CI, 0.16-0.85), P = 0.02]. Conclusion: We saw no difference in rate of body weight gain between AGA late preterm infants fed NEF compared to STF. Results should be interpreted with caution due to small sample size. Clinical Trial Registration: The Australia New Zealand Clinical Trials Registry (ACTRN 12618000092291). "mailto:maria.makrides@sahmri.com" maria.makrides@sahmri.com.

16.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066243

RESUMEN

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool. We also demonstrate specific colonization of EcN to solitary neoplastic lesions in an orthotopic murine model of CRC. We then exploit this neoplasia-homing property of EcN to develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate, and demonstrate that oral delivery of this strain results in significantly increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. We also assess EcN engineered to locally release immunotherapeutics at the neoplastic site. Oral delivery to mice bearing adenomas, reduced adenoma burden by ∻50%, with notable differences in the spatial distribution of T cell populations within diseased and healthy intestinal tissue, suggesting local induction of robust anti-tumor immunity. Together, these results support the use of EcN as an orally-delivered platform to detect disease and treat CRC through its production of screening and therapeutic molecules.

17.
Eur J Nutr ; 62(2): 857-866, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36305961

RESUMEN

PURPOSE: Early satiety has been identified as one of the mechanisms that may explain the beneficial effects of nuts for reducing obesity. This study compared postprandial changes in appetite-regulating hormones and self-reported appetite ratings after consuming almonds (AL, 15% of energy requirement) or an isocaloric carbohydrate-rich snack bar (SB). METHODS: This is a sub-analysis of baseline assessments of a larger parallel-arm randomised controlled trial in overweight and obese (Body Mass Index 27.5-34.9 kg/m2) adults (25-65 years). After an overnight fast, 140 participants consumed a randomly allocated snack (AL [n = 68] or SB [n = 72]). Appetite-regulating hormones and self-reported appetite sensations, measured using visual analogue scales, were assessed immediately before snack food consumption, and at 30, 60, 90 and 120 min following snack consumption. A sub-set of participants (AL, n = 49; SB, n = 48) then consumed a meal challenge buffet ad libitum to assess subsequent energy intake. An additional appetite rating assessment was administered post buffet at 150 min. RESULTS: Postprandial C-peptide area under the curve (AUC) response was 47% smaller with AL compared to SB (p < 0.001). Glucose-dependent insulinotropic polypeptide, glucagon and pancreatic polypeptide AUC responses were larger with AL compared to SB (18%, p = 0.005; 39% p < 0.001; 45% p < 0.001 respectively). Cholecystokinin, ghrelin, glucagon-like peptide-1, leptin and polypeptide YY AUCs were not different between groups. Self-reported appetite ratings and energy intake following the buffet did not differ between groups. CONCLUSION: More favourable appetite-regulating hormone responses to AL did not translate into better self-reported appetite or reduced short-term energy consumption. Future studies should investigate implications for longer term appetite regulation. ANZCTR REFERENCE NUMBER: ACTRN12618001861246 2018.


Asunto(s)
Apetito , Prunus dulcis , Adulto , Humanos , Apetito/fisiología , Bocadillos , Autoinforme , Insulina , Saciedad/fisiología , Ghrelina , Obesidad , Ingestión de Energía , Sensación , Carbohidratos , Periodo Posprandial
18.
Br J Pharmacol ; 180(6): 721-739, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36316276

RESUMEN

BACKGROUND AND PURPOSE: Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown. EXPERIMENTAL APPROACH: Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing. KEY RESULTS: LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF2α ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9. CONCLUSIONS AND IMPLICATIONS: The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Alucinógenos , Masculino , Animales , Ratones , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/farmacología , Endocannabinoides , Espectrometría de Masas en Tándem/métodos , Quinurenina , Ratones Endogámicos C57BL , Encéfalo
19.
Age Ageing ; 51(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36580555

RESUMEN

COVID-19 has demonstrated the devastating consequences of the rapid spread of an airborne virus in residential aged care. We report the use of CO2-based ventilation assessment to empirically identify potential 'super-spreader' zones within an aged care facility, and determine the efficacy of rapidly implemented, inexpensive, risk reduction measures.


Asunto(s)
COVID-19 , Humanos , Anciano , SARS-CoV-2 , Ventilación , Conducta de Reducción del Riesgo
20.
Brain Commun ; 4(4): fcac205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035436

RESUMEN

Huntington's disease is a neurodegenerative disorder involving psychiatric, cognitive and motor symptoms. Huntington's disease is caused by a tandem-repeat expansion in the huntingtin gene, which is widely expressed throughout the brain and body, including the gastrointestinal system. There are currently no effective disease-modifying treatments available for this fatal disorder. Despite recent evidence of gut microbiome disruption in preclinical and clinical Huntington's disease, its potential as a target for therapeutic interventions has not been explored. The microbiota-gut-brain axis provides a potential pathway through which changes in the gut could modulate brain function, including cognition. We now show that faecal microbiota transplant (FMT) from wild-type into Huntington's disease mice positively modulates cognitive outcomes, particularly in females. In Huntington's disease male mice, we revealed an inefficiency of FMT engraftment, which is potentially due to the more pronounced changes in the structure, composition and instability of the gut microbial community, and the imbalance in acetate and gut immune profiles found in these mice. This study demonstrates a role for gut microbiome modulation in ameliorating cognitive deficits modelling dementia in Huntington's disease. Our findings pave the way for the development of future therapeutic approaches, including FMT and other forms of gut microbiome modulation, as potential clinical interventions for Huntington's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...