Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1411333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854658

RESUMEN

Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium abscessus , Nitratos , Nitritos , Mycobacterium abscessus/metabolismo , Mycobacterium abscessus/genética , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Nitrito Reductasas/metabolismo , Nitrito Reductasas/genética , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/genética
2.
Microbiol Spectr ; 12(6): e0350623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38651877

RESUMEN

Tuberculosis (TB) and infectious diseases caused by non-tuberculous mycobacteria (NTM) are global concerns. The development of a rapid and accurate diagnostic method, capable of detecting and identifying different mycobacteria species, is crucial. We propose a molecular approach, the BiDz-TB/NTM, based on the use of binary deoxyribozyme (BiDz) sensors for the detection of Mycobacterium tuberculosis (Mtb) and NTM of clinical interest. A panel of DNA samples was used to evaluate Mtb-BiDz, Mycobacterium abscessus/Mycobacterium chelonae-BiDz, Mycobacterium avium-BiDz, Mycobacterium intracellulare/Mycobacterium chimaera-BiDz, and Mycobacterium kansasii-BiDz sensors in terms of specificity, sensitivity, accuracy, and limit of detection. The BiDz sensors were designed to hybridize specifically with the genetic signatures of the target species. To obtain the BiDz sensor targets, amplification of a fragment containing the hypervariable region 2 of the 16S rRNA was performed, under asymmetric PCR conditions using the reverse primer designed based on linear-after-the-exponential principles. The BiDz-TB/NTM was able to correctly identify 99.6% of the samples, with 100% sensitivity and 0.99 accuracy. The individual values of specificity, sensitivity, and accuracy, obtained for each BiDz sensor, satisfied the recommendations for new diagnostic methods, with sensitivity of 100%, specificity and accuracy ranging from 98% to 100% and from 0.98 to 1.0, respectively. The limit of detection of BiDz sensors ranged from 12 genome copies (Mtb-BiDz) to 2,110 genome copies (Mkan-BiDz). The BiDz-TB/NTM platform would be able to generate results rapidly, allowing the implementation of the appropriate therapeutic regimen and, consequently, the reduction of morbidity and mortality of patients.IMPORTANCEThis article describes the development and evaluation of a new molecular platform for accurate, sensitive, and specific detection and identification of Mycobacterium tuberculosis and other mycobacteria of clinical importance. Based on BiDz sensor technology, this assay prototype is amenable to implementation at the point of care. Our data demonstrate the feasibility of combining the species specificity of BiDz sensors with the sensitivity afforded by asymmetric PCR amplification of target sequences. Preclinical validation of this assay on a large panel of clinical samples supports the further development of this diagnostic tool for the molecular detection of pathogenic mycobacteria.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Micobacterias no Tuberculosas , Reacción en Cadena de la Polimerasa , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/aislamiento & purificación , Micobacterias no Tuberculosas/clasificación , Sensibilidad y Especificidad , ARN Ribosómico 16S/genética , Tuberculosis/diagnóstico , Tuberculosis/microbiología , ADN Bacteriano/genética , Técnicas Biosensibles/métodos
3.
Front Cell Infect Microbiol ; 13: 1144210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968107

RESUMEN

Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.


Asunto(s)
Enfermedades Pulmonares , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Regulón , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Tuberculosis (Edinb) ; 138: 102292, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495774

RESUMEN

Mycobacterium abscessus (Mab) is a highly drug-resistant non-tuberculous mycobacterial species that causes debilitating TB-like pulmonary infections. The lack of genetic tools has hampered characterization of its extensive repertoire of virulence factors, antimicrobial resistance mechanisms, and drug targets. In this study, we evaluated the performance of a mycobacterial single plasmid CRISPRi-dCas9 system optimized for M. tuberculosis and M. smegmatis for inducible gene silencing in Mab. The efficacy of CRISPRi-mediated repression of two antibiotic resistance genes (blaMab, whiB7Mab) and two putative essential genes (ftsZMab,topAMab) was determined by measuring mRNA transcript levels and phenotypic outcomes. While our results support the utility of this mycobacterial CRISPRi dCas9Sth1 single-plasmid platform for inducible silencing of specific target genes in Mab, they also highlighted several caveats and nuances that may warrant species-specific optimization for Mab. We observed overall lower levels of gene repression in Mab including variable silencing of different target genes despite use of PAMs of similar predicted strength. In addition, leaky gene repression in the absence of inducer was noted for some genes but not others. Nonetheless, using CRISPRi we demonstrated the silencing of multiple target genes and validated ftsZMab as an essential gene and promising drug target for the first time.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Expresión Génica , Mycobacterium abscessus/genética , Mycobacterium tuberculosis/genética , Micobacterias no Tuberculosas/genética , Tuberculosis/microbiología
5.
Biomacromolecules ; 23(11): 4668-4677, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36318670

RESUMEN

Mycobacterial infectious diseases, including tuberculosis (TB), severely threaten global public health. Nonreplicating Mycobacterium tuberculosis (Mtb) is extremely difficult to eradicate using current TB drugs that primarily act on replicating cells. Novel TB drugs acting on unconventional targets are needed to combat TB efficiently. Although membrane-disrupting antimicrobial peptides and their synthetic mimics exhibit the potential to kill persisters, the lack of microbe selectivity, especially toward mycobacteria, has been a concern. Here, we report that the recently developed poly(guanylurea)-piperazine (PGU-P) shows fast and selective mycobactericidal effects. Using a nonpathogenic model organism, Mycobacterium smegmatis (Msm), we have found that the mycobactericidal effects of PGU-P are correlated to the disruption of the mycobacterial membrane potential and bioenergetics. Accordingly, PGU-P also potentiates bedaquiline, an oxidative phosphorylation-targeting TB drug disturbing mycobacterial bioenergetics. Importantly, PGU-P also exhibits a promising activity against pathogenic Mtb with a minimum inhibitory concentration of 37 µg/mL. Our results support that PGU-P is a novel class of antimycobacterial biomaterial, and the unique structural feature can contribute to developing novel antimycobacterial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Fuerza Protón-Motriz , Polímeros/farmacología , Tuberculosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
6.
ACS Omega ; 7(27): 23487-23496, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847331

RESUMEN

Tuberculosis is a disease caused primarily by the organism Mycobacterium tuberculosis (Mtb), which claims about 1.5 million lives every year. A challenge that impedes the elimination of this pathogen is the ability of Mtb to remain dormant after primary infection, thus creating a reservoir for the disease in the population that reactivates under more ideal conditions. A better understanding of the physiology of dormant Mtb and therapeutics able to kill these phenotypically tolerant bacilli will be critical for completely eradicating Mtb. Our groups are focusing on characterizing the activity of derivatives of the marine natural product (+)-puupehenone (1). Recently, the Rohde group reported that puupehedione (2) and 15-α-methoxypuupehenol (3) exhibit enhanced activity in an in vitro multi-stress dormancy model of Mtb. To optimize the antimycobacterial activity of these terpenoids, novel 15-α-methoxy- and 15-α-acetoxy-puupehenol esters were prepared from (+)-puupehenone (1) accessed through a (+)-sclareolide-derived ß-hydroxyl aldehyde. For added diversity, various congeners related to (1) were also prepared from a common borono-sclareolide donor, which resulted in the synthesis of epi-puupehenol and the natural products (+)-chromazonarol and (+)-yahazunol. In total, we generated a library of 24 compounds, of which 14 were found to be active against Mtb, and the most active compounds retained the enhanced activity against dormant Mtb seen in the parent compound. Several of the 15-α-methoxy- and 15-α-acetoxy-puupehenol esters possessed potent activity against actively dividing and dormant Mtb. Intriguingly, the closely related triisobutyl derivative 16 showed similar activity to 1 in actively dividing Mtb but lost about 178-fold activity against dormant Mtb. However, the monopivaloyl compound 13 showed a modest 3- to 4-fold loss in activity in both actively dividing and dormant Mtb relative to the activity of 1 revealing the importance of the free OH at C19 supporting the potential role of quinone methide formation as critical for activity in dormant Mtb. Elucidating important structure-activity relationships and the mechanism of action of this natural product-inspired chemical series may yield insights into vulnerable drug targets in dormant bacilli and new therapeutics to more effectively target dormant Mtb.

7.
ACS Infect Dis ; 7(8): 2425-2436, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34191496

RESUMEN

Commercial carbapenem antibiotics are being used to treat multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis. Like other ß-lactams, carbapenems are irreversible inhibitors of serine d,d-transpeptidases involved in peptidoglycan biosynthesis. In addition to d,d-transpeptidases, mycobacteria also utilize nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link the stem peptides of peptidoglycan, and carbapenems form long-lived acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications of a common scaffold. This study describes the synthesis of a series of atypical, C5α modifications of the carbapenem scaffold, microbiological evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified carbapenems revealed compounds with standalone (i.e., in the absence of a ß-lactamase inhibitor) minimum inhibitory concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill kinetics assays showed better killing (2-4 log decrease) of Mtb and Mab with lower concentrations of compound 10a as compared to meropenem. Although susceptibility of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry revealed that 10a acylates LdtMt2 at a rate comparable to meropenem, but subsequently undergoes an unprecedented carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic fragmentation of the LdtMt2 acyl-enzymes is proposed. The observed activity illustrates the potential of novel atypical carbapenems as prospective candidates for treatment of Mtb and Mab infections.


Asunto(s)
Carbapenémicos , Peptidil Transferasas , Antibacterianos/farmacología , Carbapenémicos/farmacología , Estudios Prospectivos , Inhibidores de beta-Lactamasas/farmacología
8.
J Med Chem ; 64(11): 7275-7295, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33881312

RESUMEN

Pathogenic bacteria demonstrate incredible abilities to evade conventional antibiotics through the development of resistance and formation of dormant, surface-attached biofilms. Therefore, agents that target and eradicate planktonic and biofilm bacteria are of significant interest. We explored a new series of halogenated phenazines (HP) through the use of N-aryl-2-nitrosoaniline synthetic intermediates that enabled functionalization of the 3-position of this scaffold. Several HPs demonstrated potent antibacterial and biofilm-killing activities (e.g., HP 29, against methicillin-resistant Staphylococcus aureus: MIC = 0.075 µM; MBEC = 2.35 µM), and transcriptional analysis revealed that HPs 3, 28, and 29 induce rapid iron starvation in MRSA biofilms. Several HPs demonstrated excellent activities against Mycobacterium tuberculosis (HP 34, MIC = 0.80 µM against CDC1551). This work established new SAR insights, and HP 29 demonstrated efficacy in dorsal wound infection models in mice. Encouraged by these findings, we believe that HPs could lead to significant advances in the treatment of challenging infections.


Asunto(s)
Compuestos de Anilina/química , Antibacterianos/síntesis química , Fenazinas/química , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Diseño de Fármacos , Femenino , Halogenación , Humanos , Hierro/química , Deficiencias de Hierro , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Fenazinas/farmacología , Fenazinas/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad , Cicatrización de Heridas/efectos de los fármacos
9.
Biosens Bioelectron ; 165: 112385, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729510

RESUMEN

A visual cascade detection system has been applied to the detection and analysis of drug-resistance profile of Mycobacterium tuberculosis complex (MTC), a causative agent of tuberculosis. The cascade system utilizes highly selective split RNA-cleaving deoxyribozyme (sDz) sensors. When activated by a complementary nucleic acid, sDz releases the peroxidase-like deoxyribozyme apoenzyme, which, in complex with a hemin cofactor, catalyzes the color change of the sample's solution. The excellent selectivity of the cascade has allowed for the detection of point mutations in the sequences of the MTC rpoB, katG, and gyrA genes, which are responsible for resistance to rifampin, isoniazid, and fluoroquinolone, respectively. When combined with isothermal nucleic acid sequence based amplification (NASBA), the assay was able to detect amplicons of 16S rRNA and katG mRNA generated from 0.1 pg and 10 pg total RNA taken for NASBA, respectively, in less than 2 h, producing a signal detectable with the naked eye. The proposed assay may become a prototype for point-of-care diagnosis of drug resistant bacteria with visual signal output.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Mycobacterium tuberculosis , Antituberculosos , Proteínas Bacterianas/genética , Colorimetría , ARN Polimerasas Dirigidas por ADN/genética , Resistencia a Medicamentos , Isoniazida , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , ARN Ribosómico 16S
10.
Biochem J ; 477(2): 567-581, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31913442

RESUMEN

Pathogenic and opportunistic mycobacteria have a distinct class of non-heme di-iron hemerythrin-like proteins (HLPs). The first to be isolated was the Rv2633c protein, which plays a role in infection by Mycobacterium tuberculosis (Mtb), but could not be crystallized. This work presents the first crystal structure of an ortholog of Rv2633c, the mycobacterial HLP from Mycobacterium kansasii (Mka). This structure differs from those of hemerythrins and other known HLPs. It consists of five α-helices, whereas all other HLP domains have four. In contrast with other HLPs, the HLP domain is not fused to an additional protein domain. The residues ligating and surrounding the di-iron site are also unique among HLPs. Notably, a tyrosine occupies the position normally held by one of the histidine ligands in hemerythrin. This structure was used to construct a homology model of Rv2633c. The structure of five α-helices is conserved and the di-iron site ligands are identical in Rv2633c. Two residues near the ends of helices in the Mka HLP structure are replaced with prolines in the Rv2633c model. This may account for structural perturbations that decrease the solubility of Rv2633c relative to Mka HLP. Clusters of residues that differ in charge or polarity between Rv2633c and Mka HLP that point outward from the helical core could reflect a specificity for potential differential interactions with other protein partners in vivo, which are related to function. The Mka HLP exhibited weaker catalase activity than Rv2633c. Evidence was obtained for the interaction of Mka HLP irons with nitric oxide.


Asunto(s)
Hemeritrina/ultraestructura , Mycobacterium kansasii/ultraestructura , Mycobacterium tuberculosis/ultraestructura , Conformación Proteica , Tuberculosis/microbiología , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Hemeritrina/química , Hemeritrina/genética , Humanos , Hierro/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mycobacterium kansasii/genética , Mycobacterium kansasii/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tuberculosis/genética , Tuberculosis/patología
11.
Front Microbiol ; 11: 634640, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584600

RESUMEN

Given the upsurge of drug-resistant tuberculosis worldwide, there is much focus on developing novel drug combinations allowing shorter treatment duration and a lower toxicity profile. Nicotinamide adenine dinucleotide (NAD) biosynthesis targeting is acknowledged as a promising strategy to combat drug-susceptible, drug-resistant, and latent tuberculosis (TB) infections. In this review, we describe the potential synergy of NAD biosynthesis inhibitors with several TB-drugs in prospective novel combination therapy. Despite not directly targeting the essential NAD cofactor's biosynthesis, several TB prodrugs either require a NAD biosynthesis enzyme to be activated or form a toxic chemical adduct with NAD(H) itself. For example, pyrazinamide requires the action of nicotinamidase (PncA), often referred to as pyrazinamidase, to be converted into its active form. PncA is an essential player in NAD salvage and recycling. Since most pyrazinamide-resistant strains are PncA-defective, a combination with downstream NAD-blocking molecules may enhance pyrazinamide activity and possibly overcome the resistance mechanism. Isoniazid, ethionamide, and delamanid form NAD adducts in their active form, partly perturbing the redox cofactor metabolism. Indeed, NAD depletion has been observed in Mycobacterium tuberculosis (Mtb) during isoniazid treatment, and activation of the intracellular NAD phosphorylase MbcT toxin potentiates its effect. Due to the NAD cofactor's crucial role in cellular energy production, additional synergistic correlations of NAD biosynthesis blockade can be envisioned with bedaquiline and other drugs targeting energy-metabolism in mycobacteria. In conclusion, future strategies targeting NAD metabolism in Mtb should consider its potential synergy with current and other forthcoming TB-drugs.

12.
Sci Rep ; 9(1): 19348, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852980

RESUMEN

Macrophages are an important component of the innate immune response. Priming and activation of macrophages is stimulated by cytokines (i.e IFNγ). However, growth hormone (GH) can also stimulate macrophage activation. Based on these observations, the goal of this work was to 1) to compare the transcriptome profile of macrophages activated in vitro with GH and IFNγ, and 2) to assess the impact of GH on key macrophage functional properties like reactive oxygen species (ROS) production and phagosomal proteolysis. To assess the global transcriptional and functional impact of GH on macrophage programming, bone marrow derived macrophages were treated with GH or IFNγ. Our data strongly support a potential link between GH, which wanes with age, and impaired macrophage function. The notable overlap of GH with IFNγ-induced pathways involved in innate immune sensing of pathogens and antimicrobial responses argue for an important role for GH in macrophage priming and maturation. By using functional assays that report on biochemical activities within the lumen of phagosomes, we have also shown that GH alters physiologically relevant processes such as ROS production and proteolysis. These changes could have far reaching impacts on antimicrobial capacity, signaling, and antigen presentation.


Asunto(s)
Reprogramación Celular/genética , Hormona del Crecimiento/farmacología , Macrófagos/metabolismo , Transcriptoma/genética , Animales , Reprogramación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Análisis de Componente Principal , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
ACS Chem Biol ; 14(5): 949-958, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30969758

RESUMEN

Conventional treatments to combat the tuberculosis (TB) epidemic are falling short, thus encouraging the search for novel antitubercular drugs acting on unexplored molecular targets. Several whole-cell phenotypic screenings have delivered bioactive compounds with potent antitubercular activity. However, their cellular target and mechanism of action remain largely unknown. Further evaluation of these compounds may include their screening in search for known antitubercular drug targets hits. Here, a collection of nearly 1400 mycobactericidal compounds was screened against Mycobacterium tuberculosis NaMN adenylyltransferase ( MtNadD), a key enzyme in the biogenesis of NAD cofactor that was recently validated as a new drug target for dormant and active tuberculosis. We found three chemotypes that efficiently inhibit MtNadD in the low micromolar range in vitro. SAR and cheminformatics studies of commercially available analogues point to a series of benzimidazolium derivatives, here named N2, with bactericidal activity on different mycobacteria, including M. abscessus, multidrug-resistant M. tuberculosis, and dormant M. smegmatis. The on-target activity was supported by the increased resistance of an M. smegmatis strain overexpressing the target and by a rapid decline in NAD(H) levels. A cocrystal structure of MtNadD with N2-8 inhibitor reveals that the binding of the inhibitor induced the formation of a new quaternary structure, a dimer-of-dimers where two copies of the inhibitor occupy symmetrical positions in the dimer interface, thus paving the way for the development of a new generation of selective MtNadD bioactive inhibitors. All these results strongly suggest that pharmacological inhibition of MtNadD is an effective strategy to combat dormant and resistant Mtb strains.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , NAD/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , NAD/biosíntesis , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Relación Estructura-Actividad
14.
PLoS One ; 14(2): e0212064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30730960

RESUMEN

In Mycobacterium tuberculosis (Mtb) the detection of single nucleotide polymorphisms (SNPs) is of high importance both for diagnostics, since drug resistance is primarily caused by the acquisition of SNPs in multiple drug targets, and for epidemiological studies in which strain typing is performed by SNP identification. To provide the necessary coverage of clinically relevant resistance profiles and strain types, nucleic acid-based measurement techniques must be able to detect a large number of potential SNPs. Since the Mtb problem is pressing in many resource-poor countries, requiring low-cost point-of-care biosensors, this is a non-trivial technological challenge. This paper presents a proof-of-concept in which we chose simple DNA-DNA hybridization as a sensing principle since this can be transferred to existing low-cost hardware platforms, and we pushed the multiplex boundaries of it. With a custom designed probe set and a physicochemical-driven data analysis it was possible to simultaneously detect the presence of SNPs associated with first- and second-line drug resistance and Mtb strain typing. We have demonstrated its use for the identification of drug resistance and strain type from a panel of phylogenetically diverse clinical strains. Furthermore, reliable detection of the presence of a minority population (<5%) of drug-resistant Mtb was possible.


Asunto(s)
ADN Bacteriano/metabolismo , Mycobacterium tuberculosis/genética , Tuberculosis/patología , Antituberculosos/farmacología , ADN Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa Multiplex , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Hibridación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Tuberculosis/microbiología
15.
Mar Drugs ; 17(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888140

RESUMEN

Tuberculosis is the leading cause of death due to infectious disease worldwide. There is an urgent need for more effective compounds against this pathogen to control the disease. Investigation of the anti-mycobacterial activity of a deep-water sponge of the genus Plakina revealed the presence of a new steroidal alkaloid of the plakinamine class, which we have given the common name plakinamine P. Its structure is most similar to plakinamine L, which also has an acyclic side chain. Careful dissection of the nuclear magnetic resonance data, collected in multiple solvents, suggests that the dimethyl amino group at the 3 position is in an equatorial rather than axial position unlike previously reported plakinamines. Plakinamine P was bactericidal against M. tuberculosis, and exhibited moderate activity against other mycobacterial pathogens, such as M. abscessus and M. avium. Furthermore, it had low toxicity against J774 macrophages, yielding a selectivity index (SI, or IC50/MIC) of 8.4. In conclusion, this work provides a promising scaffold to the tuberculosis drug discovery pipeline. Future work to determine the molecular target of this compound may reveal a pathway essential for M. tuberculosis survival during infection.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Esteroides/química , Esteroides/farmacología , Antituberculosos/química , Estructura Molecular
16.
Clin Chem ; 65(2): 333-341, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30523201

RESUMEN

BACKGROUND: Nontuberculous mycobacteria (NTM) species are a rising threat, especially to patients living with pulmonary comorbidities. Current point-of-care diagnostics fail to adequately identify and differentiate NTM species from Mycobacterium tuberculosis (Mtb). Definitive culture- and molecular-based testing can take weeks to months and requires sending samples out to specialized diagnostic laboratories. METHODS: In this proof-of-concept study, we developed an assay based on PCR amplification of 16S ribosomal RNA (rRNA) rrs genes by using universal mycobacterial primers and interrogation of the amplified fragments with a panel of binary deoxyribozyme (BiDz) sensors to enable species-level identification of NTM (BiDz-NTMST). Each BiDz sensor consists of 2 subunits of an RNA-cleaving deoxyribozyme, which form an active deoxyribozyme catalytic core only in the presence of the complimentary target sequence. The target-activated BiDz catalyzes cleavage of a reporter substrate, thus triggering either fluorescent or colorimetric (visually observed) signal depending on the substrate used. The panel included BiDz sensors for differentiation of 6 clinically relevant NTM species (Mycobacterium abscessus, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium kansasii, and Mycobacterium gordonae) and Mtb. RESULTS: Using the fluorescent BiDz-NTMST assay, we successfully identified the species of 38 clinical isolates. In addition, a subset of strains was tested with visual BiDz sensors, providing proof-of-concept for species typing of NTM by the naked eye. CONCLUSIONS: The BiDz-NTMST assay is a novel platform for rapid identification of NTM species. This method is highly specific and significantly faster than current tools and is easily adaptable for onsite diagnostic laboratories in hospitals or clinical laboratories.


Asunto(s)
ADN Catalítico/metabolismo , Micobacterias no Tuberculosas/genética , Colorimetría , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Micobacterias no Tuberculosas/aislamiento & purificación , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
17.
Mar Drugs ; 16(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308948

RESUMEN

There is an acute need for new and effective agents to treat infectious diseases. We conducted a screening program to assess the potential of mangrove-derived endophytic fungi as a source of new antibiotics. Fungi cultured in the presence and absence of small molecule epigenetic modulators were screened against Mycobacterium tuberculosis and the ESKAPE panel of bacterial pathogens, as well as two eukaryotic infective agents, Leishmania donovani and Naegleria fowleri. By comparison of bioactivity data among treatments and targets, trends became evident, such as the result that more than 60% of active extracts were revealed to be selective to a single target. Validating the technique of using small molecules to dysregulate secondary metabolite production pathways, nearly half (44%) of those fungi producing active extracts only did so following histone deacetylase inhibitory (HDACi) or DNA methyltransferase inhibitory (DNMTi) treatment.


Asunto(s)
Enfermedades Transmisibles/tratamiento farmacológico , Endófitos/metabolismo , Hongos/metabolismo , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Línea Celular , Descubrimiento de Drogas/métodos , Inhibidores de Histona Desacetilasas/farmacología , Metiltransferasas/antagonistas & inhibidores , Ratones
18.
Artículo en Inglés | MEDLINE | ID: mdl-29483110

RESUMEN

Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


Asunto(s)
Oro/farmacología , Sustancias Intercalantes/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Humanos , Compuestos Macrocíclicos/farmacología , Mycobacterium abscessus/aislamiento & purificación , Mycobacterium abscessus/metabolismo , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo
19.
J Biol Chem ; 293(5): 1590-1595, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242190

RESUMEN

The Rv2633c gene in Mycobacterium tuberculosis is rapidly up-regulated after macrophage infection, suggesting that Rv2633c is involved in M. tuberculosis pathogenesis. However, the activity and role of the Rv2633c protein in host colonization is unknown. Here, we analyzed the Rv2633c protein sequence, which revealed the presence of an HHE cation-binding domain common in hemerythrin-like proteins. Phylogenetic analysis indicated that Rv2633c is a member of a distinct subset of hemerythrin-like proteins exclusive to mycobacteria. The Rv2633c sequence was significantly similar to protein sequences from other pathogenic strains within that subset, suggesting that these proteins are involved in mycobacteria virulence. We expressed and purified the Rv2633c protein in Escherichia coli and found that it contains two iron atoms, but does not behave like a hemerythrin. It migrated as a dimeric protein during size-exclusion chromatography. It was not possible to reduce the protein or observe any evidence for its interaction with O2 However, Rv2633c did exhibit catalase activity with a kcat of 1475 s-1 and Km of 10.1 ± 1.7 mm Cyanide and azide inhibited the catalase activity with Ki values of 3.8 µm and 37.7 µm, respectively. Rv2633c's activity was consistent with a role in defenses against oxidative stress generated during host immune responses after M. tuberculosis infection of macrophages. We note that Rv2633c is the first example of a non-heme di-iron catalase, and conclude that it is a member of a subset of hemerythrin-like proteins exclusive to mycobacteria, with likely roles in protection against host defenses.


Asunto(s)
Proteínas Bacterianas/química , Catalasa/química , Hierro/química , Metaloproteínas/química , Mycobacterium tuberculosis/enzimología , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Hierro/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Estrés Oxidativo , Multimerización de Proteína , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Front Microbiol ; 8: 2204, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176967

RESUMEN

Mycobacterium abscessus is a non-tuberculous mycobacterium that causes pulmonary and non-pulmonary infections. M. abscessus is resistant to many chemotherapeutic agents and the current treatment options show poor clinical outcomes. Thus, there is a dire need to find new antimicrobials effective at killing M. abscessus. Screening drug libraries to identify potential antimicrobials has been impeded by the lack of validated HTS assays for M. abscessus. In this study, we developed two 384-well high-throughput screening assays using fluorescent and bioluminescent reporter strains of M. abscessus for drug discovery. Optimization of inoculum size, incubation time and the volume-per-well based on Z-factor and signal intensity yielded two complementary, robust tools for M. abscessus drug discovery with Z-factor > 0.8. The MIC of known drugs, amikacin and clarithromycin, as determined by bioluminescence was in agreement with the published MIC values. A proof-of-concept screen of 2,093 natural product-inspired compounds was conducted using the 384-well bioluminescent assay to identify novel scaffolds active against M. abscessus. Five active "hit" compounds identified in this pilot screen were confirmed and characterized by a CFU assay and MIC determination. Overall, we developed and validated a 384-well screen that offers simple, sensitive and fast screening of compounds for activity against this emerging pathogen. To our knowledge, this is the first reporter-based high-throughput screening study aimed at M. abscessus drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA