Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(8): 14300-14320, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859380

RESUMEN

Photonic accelerators have recently attracted soaring interest, harnessing the ultimate nature of light for information processing. Collective decision-making with a laser network, employing the chaotic and synchronous dynamics of optically interconnected lasers to address the competitive multi-armed bandit (CMAB) problem, is a highly compelling approach due to its scalability and experimental feasibility. We investigated essential network structures for collective decision-making through quantitative stability analysis. Moreover, we demonstrated the asymmetric preferences of players in the CMAB problem, extending its functionality to more practical applications. Our study highlights the capability and significance of machine learning built upon chaotic lasers and photonic devices.

2.
Sci Rep ; 13(1): 14636, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670023

RESUMEN

Collective decision-making plays a crucial role in information and communication systems. However, decision conflicts among agents often impede the maximization of potential utilities within the system. Quantum processes have shown promise in achieving conflict-free joint decisions between two agents through the entanglement of photons or the quantum interference of orbital angular momentum (OAM). Nonetheless, previous studies have shown symmetric resultant joint decisions, which, while preserving equality, fail to address disparities. In light of global challenges such as ethics and equity, it is imperative for decision-making systems to not only maintain existing equality but also address and resolve disparities. In this study, we investigate asymmetric collective decision-making theoretically and numerically using quantum interference of photons carrying OAM or entangled photons. We successfully demonstrate the realization of asymmetry; however, it should be noted that a certain degree of photon loss is inevitable in the proposed models. We also provide an analytical formulation for determining the available range of asymmetry and describe a method for obtaining the desired degree of asymmetry.

3.
Entropy (Basel) ; 25(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37628160

RESUMEN

Matrix multiplication is important in various information-processing applications, including the computation of eigenvalues and eigenvectors, and in combinatorial optimization algorithms. Therefore, reducing the computation time of matrix products is essential to speed up scientific and practical calculations. Several approaches have been proposed to speed up this process, including GPUs, fast matrix multiplication libraries, custom hardware, and efficient approximate matrix multiplication (AMM) algorithms. However, research to date has yet to focus on accelerating AMMs for general matrices on GPUs, despite the potential of GPUs to perform fast and accurate matrix product calculations. In this paper, we propose a method for improving Monte Carlo AMMs. We also give an analytical solution for the optimal values of the hyperparameters in the proposed method. The proposed method improves the approximation of the matrix product without increasing the computation time compared to the conventional AMMs. It is also designed to work well with parallel operations on GPUs and can be incorporated into various algorithms. Finally, the proposed method is applied to a power method used for eigenvalue computation. We demonstrate that, on an NVIDIA A100 GPU, the computation time can be halved compared to the conventional power method using cuBLAS.

4.
Entropy (Basel) ; 25(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372187

RESUMEN

Quantum walks (QWs) have a property that classical random walks (RWs) do not possess-the coexistence of linear spreading and localization-and this property is utilized to implement various kinds of applications. This paper proposes RW- and QW-based algorithms for multi-armed-bandit (MAB) problems. We show that, under some settings, the QW-based model realizes higher performance than the corresponding RW-based one by associating the two operations that make MAB problems difficult-exploration and exploitation-with these two behaviors of QWs.

5.
Chaos ; 33(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347641

RESUMEN

Reservoir computing is a machine learning paradigm that uses a structure called a reservoir, which has nonlinearities and short-term memory. In recent years, reservoir computing has expanded to new functions such as the autonomous generation of chaotic time series, as well as time series prediction and classification. Furthermore, novel possibilities have been demonstrated, such as inferring the existence of previously unseen attractors. Sampling, in contrast, has a strong influence on such functions. Sampling is indispensable in a physical reservoir computer that uses an existing physical system as a reservoir because the use of an external digital system for the data input is usually inevitable. This study analyzes the effect of sampling on the ability of reservoir computing to autonomously regenerate chaotic time series. We found, as expected, that excessively coarse sampling degrades the system performance, but also that excessively dense sampling is unsuitable. Based on quantitative indicators that capture the local and global characteristics of attractors, we identify a suitable window of the sampling frequency and discuss its underlying mechanisms.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Factores de Tiempo , Reproducción
6.
Chaos ; 33(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37097964

RESUMEN

Multiscale entropy (MSE) has been widely used to examine nonlinear systems involving multiple time scales, such as biological and economic systems. Conversely, Allan variance has been used to evaluate the stability of oscillators, such as clocks and lasers, ranging from short to long time scales. Although these two statistical measures were developed independently for different purposes in different fields, their interest lies in examining the multiscale temporal structures of physical phenomena under study. We demonstrate that from an information-theoretical perspective, they share some foundations and exhibit similar tendencies. We experimentally confirmed that similar properties of the MSE and Allan variance can be observed in low-frequency fluctuations (LFF) in chaotic lasers and physiological heartbeat data. Furthermore, we calculated the condition under which this consistency between the MSE and Allan variance exists, which is related to certain conditional probabilities. Heuristically, natural physical systems including the aforementioned LFF and heartbeat data mostly satisfy this condition, and hence, the MSE and Allan variance demonstrate similar properties. As a counterexample, we demonstrate an artificially constructed random sequence, for which the MSE and Allan variance exhibit different trends.

7.
Phys Rev E ; 107(1-1): 014211, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797858

RESUMEN

Allan variance has been widely utilized for evaluating the stability of the time series generated by atomic clocks and lasers, in time regimes ranging from short to extremely long. This multiscale examination capability of the Allan variance may also be beneficial in evaluating the chaotic oscillating dynamics of semiconductor lasers- not just for conventional phase stability analysis. In the present study, we demonstrated Allan variance analysis of the complex time series generated by a semiconductor laser with delayed feedback, including low-frequency fluctuations (LFFs), which exhibit both fast and slow dynamics. While the detection of LFFs is difficult with the conventional power spectrum analysis method in the low-frequency regime, the Allan variance approach clearly captured the appearance of multiple time-scale dynamics, such as LFFs. This study demonstrates that Allan variance can help in understanding and characterizing diverse laser dynamics, including LFFs, spanning a wide range of timescales.

8.
Entropy (Basel) ; 25(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36673287

RESUMEN

Fully pairing all elements of a set while attempting to maximize the total benefit is a combinatorically difficult problem. Such pairing problems naturally appear in various situations in science, technology, economics, and other fields. In our previous study, we proposed an efficient method to infer the underlying compatibilities among the entities, under the constraint that only the total compatibility is observable. Furthermore, by transforming the pairing problem into a traveling salesman problem with a multi-layer architecture, a pairing optimization algorithm was successfully demonstrated to derive a high-total-compatibility pairing. However, there is substantial room for further performance enhancement by further exploiting the underlying mathematical properties. In this study, we prove the existence of algebraic structures in the pairing problem. We transform the initially estimated compatibility information into an equivalent form where the variance of the individual compatibilities is minimized. We then demonstrate that the total compatibility obtained when using the heuristic pairing algorithm on the transformed problem is significantly higher compared to the previous method. With this improved perspective on the pairing problem using fundamental mathematical properties, we can contribute to practical applications such as wireless communications beyond 5G, where efficient pairing is of critical importance. As the pairing problem is a special case of the maximum weighted matching problem, our findings may also have implications for other algorithms on fully connected graphs.

9.
Chaos ; 32(11): 113107, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36456323

RESUMEN

Reservoir computing is a machine learning approach that can generate a surrogate model of a dynamical system. It can learn the underlying dynamical system using fewer trainable parameters and, hence, smaller training data sets than competing approaches. Recently, a simpler formulation, known as next-generation reservoir computing, removed many algorithm metaparameters and identified a well-performing traditional reservoir computer, thus simplifying training even further. Here, we study a particularly challenging problem of learning a dynamical system that has both disparate time scales and multiple co-existing dynamical states (attractors). We compare the next-generation and traditional reservoir computer using metrics quantifying the geometry of the ground-truth and forecasted attractors. For the studied four-dimensional system, the next-generation reservoir computing approach uses ∼ 1.7 × less training data, requires 10 × shorter "warmup" time, has fewer metaparameters, and has an ∼ 100 × higher accuracy in predicting the co-existing attractor characteristics in comparison to a traditional reservoir computer. Furthermore, we demonstrate that it predicts the basin of attraction with high accuracy. This work lends further support to the superior learning ability of this new machine learning algorithm for dynamical systems.

10.
Opt Lett ; 47(3): 613-616, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103688

RESUMEN

In this Letter, we present wave propagation models of spatially partially coherent (or spatially incoherent) light to compress the computational load of forward and back propagations in inverse problems. In our model, partially coherent light is approximated as a set of random or plane wavefronts passing through spatial bandpass filters, which corresponds to an illumination pupil, and each wave coherently propagates onto a sensor plane through object space. We show that our models reduce the number of coherent propagations in inverse problems, which are essential in optical control and sensing, such as computer-generated holography (CGH) and quantitative phase imaging. We verify the proposed models by numerical and experimental demonstrations of CGH incorporating spatially partially coherent light.

11.
IEEE Trans Neural Netw Learn Syst ; 33(6): 2714-2725, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34662281

RESUMEN

Physical dynamical systems are able to process information in a nontrivial manner. The machine learning paradigm of reservoir computing (RC) provides a suitable framework for information processing in (analog) dynamical systems. The potential of dynamical systems for RC can be quantitatively characterized by the information processing capacity (IPC) measure. Here, we evaluate the IPC measure of a reservoir computer based on a single-analog nonlinear node coupled with delay. We link the extracted IPC measures to the dynamical regime of the reservoir, reporting an experimentally measured nonlinear memory of up to seventh order. In addition, we find a nonhomogeneous distribution of the linear and nonlinear contributions to the IPC as a function of the system operating conditions. Finally, we unveil the role of noise in the IPC of the analog implementation by performing ad hoc numerical simulations. In this manner, we identify the so-called edge of stability as being the most promising operating condition of the experimental implementation for RC purposes in terms of computational power and noise robustness. Similarly, a strong input drive is shown to have beneficial properties, albeit with a reduced memory depth.

12.
Chaos ; 31(10): 103127, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34717323

RESUMEN

Reservoir computers are powerful tools for chaotic time series prediction. They can be trained to approximate phase space flows and can thus both predict future values to a high accuracy and reconstruct the general properties of a chaotic attractor without requiring a model. In this work, we show that the ability to learn the dynamics of a complex system can be extended to systems with multiple co-existing attractors, here a four-dimensional extension of the well-known Lorenz chaotic system. We demonstrate that a reservoir computer can infer entirely unexplored parts of the phase space; a properly trained reservoir computer can predict the existence of attractors that were never approached during training and, therefore, are labeled as unseen. We provide examples where attractor inference is achieved after training solely on a single noisy trajectory.

13.
Nat Commun ; 12(1): 5164, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453053

RESUMEN

Deep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron's dynamics. By adjusting the feedback-modulation within the loops, we adapt the network's connection weights. These connection weights are determined via a back-propagation algorithm, where both the delay-induced and local network connections must be taken into account. Our approach can fully represent standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Neuronas/química , Humanos , Neuronas/citología , Análisis de la Célula Individual
14.
Neural Netw ; 124: 158-169, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32006747

RESUMEN

The time-delay-based reservoir computing setup has seen tremendous success in both experiment and simulation. It allows for the construction of large neuromorphic computing systems with only few components. However, until now the interplay of the different timescales has not been investigated thoroughly. In this manuscript, we investigate the effects of a mismatch between the time-delay and the clock cycle for a general model. Typically, these two time scales are considered to be equal. Here we show that the case of equal or resonant time-delay and clock cycle could be actively detrimental and leads to an increase of the approximation error of the reservoir. In particular, we can show that non-resonant ratios of these time scales have maximal memory capacities. We achieve this by translating the periodically driven delay-dynamical system into an equivalent network. Networks that originate from a system with resonant delay-times and clock cycles fail to utilize all of their degrees of freedom, which causes the degradation of their performance.


Asunto(s)
Redes Neurales de la Computación , Periodicidad
15.
Chaos ; 28(6): 063114, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960415

RESUMEN

In the model system of two instantaneously and symmetrically coupled identical Stuart-Landau oscillators, we demonstrate that there exist stable solutions with symmetry-broken amplitude- and phase-locking. These states are characterized by a non-trivial fixed phase or amplitude relationship between both oscillators, while simultaneously maintaining perfectly harmonic oscillations of the same frequency. While some of the surrounding bifurcations have been previously described, we present the first detailed analytical and numerical description of these states and present analytically and numerically how they are embedded in the bifurcation structure of the system, arising both from the in-phase and the anti-phase solutions, as well as through a saddle-node bifurcation. The dependence of both the amplitude and the phase on parameters can be expressed explicitly with analytic formulas. As opposed to the previous reports, we find that these symmetry-broken states are stable, which can even be shown analytically. As an example of symmetry-breaking solutions in a simple and symmetric system, these states have potential applications as bistable states for switches in a wide array of coupled oscillatory systems.

16.
Phys Rev E ; 94(4-1): 042204, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841464

RESUMEN

We present results obtained for a network of four delay-coupled lasers modeled by Lang-Kobayashi-type equations. We find small chimera states consisting of a pair of synchronized lasers and two unsynchronized lasers. One class of these small chimera states can be understood as intermediate steps on the route from synchronization to desynchronization, and we present the entire chain of bifurcations giving birth to them. This class of small chimeras can exhibit limit-cycle or quasiperiodic dynamics. A second type of small chimera states exists apparently disconnected from any region of synchronization, arising from pair synchronization inside the chaotic desynchronized regime. In contrast to previously reported chimera states in globally coupled networks, we find that the small chimera state is the only stable solution of the system for certain parameter regions; i.e., we do not need to specially prepare initial conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA