Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Phys Chem Chem Phys ; 26(8): 7239, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38344885

Correction for 'Impact of temperature-dependent non-PAN peroxynitrate formation, RO2NO2, on nighttime atmospheric chemistry' by Michelle Färber et al., Phys. Chem. Chem. Phys., 2024, https://doi.org/10.1039/d3cp04163h.

2.
Phys Chem Chem Phys ; 26(6): 5183-5194, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38261377

The formation of peroxynitrates (RO2NO2) from the reaction of peroxy radicals (RO2) and nitrogen dioxide (NO2) and their subsequent redissociation are typically not included in chemical mechanisms. This is often done to save computational time as the assumption is that the equilibrium is strongly towards the RO2 + NO2 reaction for most conditions. Exceptions are the reactions of the methyl peroxy radical due to its abundance in the atmosphere and of acyl-RO2 radicals due to the long lifetime of peroxyacyl nitrates RO2NO2 (PANs). In this study, the nighttime oxidation of cis-2-butene and trans-2-hexene in the presence of NO2 is investigated in the atmospheric simulation chamber SAPHIR, Forschungszentrum Jülich, Germany, at atmospherically-relevant conditions at different temperatures (≈276 K, ≈293 K, ≈305 K). Measured concentrations of peroxy and hydroperoxy radicals as well as other trace gases (ozone, NO2, volatile organic compounds) are compared to state-of-the-art zero-dimensional box model calculations. Good model-measurement agreement can only be achieved when reversible RO2 + NO2 reactions are included for all RO2 species using literature values available from the latest SAR by [Jenkin et al., Atmos. Chem. Phys., 2019, 19, 7691]. The good agreement observed gives confidence that the SAR, derived originally for aliphatic RO2, can be applied to a large range of substituted RO2 radicals, simplifying generalised implementation in chemical models. RO2NO2 concentrations from non-acyl RO2 radicals of up to 2 × 10 cm-3 are predicted at 276 K, impacting effectively the kinetics of RO2 radicals. Under these conditions, peroxy radicals are slowly regenerated downwind of the pollution source and may be lost in the atmosphere through deposition of RO2NO2. Based on this study, 60% of RO2 radicals would be stored as RO2NO2 at a temperature of 10 °C and in the presence of a few ppbv of NO2. The fraction increases further at colder temperatures and/or higher NO2 mixing ratios. This does not only affect the expected concentrations of RO2 radicals but, as the peroxynitrates can react with OH radicals or photolyse, they could comprise a net sink for RO2 radicals as well as increase the production of NOx (= NO + NO2) in different locations depending on their lifetime. Omitting this chemistry from the kinetic model can lead to misinterpreted product formation and may prevent reconciling observations and model predictions.

3.
Environ Sci Technol ; 55(23): 15658-15671, 2021 12 07.
Article En | MEDLINE | ID: mdl-34807606

The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, ß-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.


Air Pollutants , Nitrates , Aerosols , Air Pollutants/analysis , Bicyclic Monoterpenes , Humans
4.
ACS Earth Space Chem ; 5(4): 785-800, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33889791

Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO3Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 ± 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with ∼50 µg m-3 inorganic seed aerosol and 2-5 µg m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically ∼100 ppb O3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K p ∼ 10-3 m3 µg-1), indicating an average volatility corresponding to a C5 hydroxy hydroperoxy nitrate.

5.
Environ Sci Technol ; 54(10): 5973-5979, 2020 05 19.
Article En | MEDLINE | ID: mdl-32343120

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature.


Ozone/analysis , Aerosols/analysis , Atmosphere , China , Hydroxyl Radical
6.
Environ Sci Technol ; 53(18): 10676-10684, 2019 Sep 17.
Article En | MEDLINE | ID: mdl-31418557

In contrast to summer smog, the contribution of photochemistry to the formation of winter haze in northern mid-to-high latitude is generally assumed to be minor due to reduced solar UV and water vapor concentrations. Our comprehensive observations of atmospheric radicals and relevant parameters during several haze events in winter 2016 Beijing, however, reveal surprisingly high hydroxyl radical oxidation rates up to 15 ppbv/h, which is comparable to the high values reported in summer photochemical smog and is two to three times larger than those determined in previous observations during winter in Birmingham (Heard et al. Geophys. Res. Lett. 2004, 31, (18)), Tokyo (Kanaya et al. J. Geophys. Res.: Atmos. 2007, 112, (D21)), and New York (Ren et al. Atmos. Environ. 2006, 40, 252-263). The active photochemistry facilitates the production of secondary pollutants. It is mainly initiated by the photolysis of nitrous acid and ozonolysis of olefins and maintained by an extremely efficiently radical cycling process driven by nitric oxide. This boosted radical recycling generates fast photochemical ozone production rates that are again comparable to those during summer photochemical smog. The formation of ozone, however, is currently masked by its efficient chemical removal by nitrogen oxides contributing to the high level of wintertime particles. The future emission regulations, such as the reduction of nitrogen oxide emissions, therefore are facing the challenge of reducing haze and avoiding an increase in ozone pollution at the same time. Efficient control strategies to mitigate winter haze in Beijing may require measures similar as implemented to avoid photochemical smog in summer.


Air Pollutants , Ozone , Beijing , New York , Photochemistry , Smog
7.
Faraday Discuss ; 189: 407-37, 2016 07 18.
Article En | MEDLINE | ID: mdl-27117015

The analysis of the individual composition of hydrocarbon (VOC) mixtures enables us to transform observed VOC-concentrations into their respective total VOC-reactivity versus OH radicals (RVOC = Σ(kOH+VOCi × [VOCi])). This is particularly useful because local ozone production essentially depends on this single parameter rather than on the details of the underlying hydrocarbon mixture (Klemp et al., Schriften des Forschungszentrums Jülich, Energy & Environment, 2012, 21). The VOC composition also enables us to pin down the major emission source of hydrocarbons in urban areas to be petrol cars with temporarily reduced catalyst efficiency (the so-called cold-start situation) whereas the source of nitrogen oxides (NOx = NO + NO2) is expected to be nowadays dominated by diesel cars. The observations in the vicinity of main roads in German cities show a decrease in the ratio of OH reactivities of VOC and NO2 (RVOC/RNO2) by a factor of 7.5 over the time period 1994-2014. This is larger than the expected decrease of a factor of 2.9 taking estimated trends of VOC and NOx traffic emissions in Germany (Umweltbundesamt Deutschland, National Trend Tables for the German Atmospheric Emission Reporting, 2015), during this time period. The observed reduction in the RVOC/RNO2 ratio leads to a drastic decrease in local ozone production driven by the reduction in hydrocarbons. The analysis reveals that the overall reduction of ozone production benefits from the low decrease of NOx emissions from road traffic which is a consequence of the eventual absence of catalytic converters for nitrogen oxide removal in diesel cars up to now.

8.
Science ; 348(6241): 1326, 2015 Jun 19.
Article En | MEDLINE | ID: mdl-26089508

Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2·H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.

9.
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Article En | MEDLINE | ID: mdl-24810838

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.


Air Pollutants/chemistry , Terpenes/chemistry , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Gases/chemistry , Oxidation-Reduction , Photochemical Processes , Terpenes/analysis , Volatilization
10.
Science ; 344(6181): 292-6, 2014 Apr 18.
Article En | MEDLINE | ID: mdl-24744373

Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.

11.
Science ; 324(5935): 1702-4, 2009 Jun 26.
Article En | MEDLINE | ID: mdl-19498111

The degradation of trace gases and pollutants in the troposphere is dominated by their reaction with hydroxyl radicals (OH). The importance of OH rests on its high reactivity, its ubiquitous photochemical production in the sunlit atmosphere, and most importantly on its regeneration in the oxidation chain of the trace gases. In the current understanding, the recycling of OH proceeds through HO2 reacting with NO, thereby forming ozone. A recent field campaign in the Pearl River Delta, China, quantified tropospheric OH and HO2 concentrations and turnover rates by direct measurements. We report that concentrations of OH were three to five times greater than expected, and we propose the existence of a pathway for the regeneration of OH independent of NO, which amplifies the degradation of pollutants without producing ozone.

12.
Nature ; 442(7099): 184-7, 2006 Jul 13.
Article En | MEDLINE | ID: mdl-16838018

The most important chemical cleaning agent of the atmosphere is the hydroxyl radical, OH. It determines the oxidizing power of the atmosphere, and thereby controls the removal of nearly all gaseous atmospheric pollutants. The atmospheric supply of OH is limited, however, and could be overcome by consumption due to increasing pollution and climate change, with detrimental feedback effects. To date, the high variability of OH concentrations has prevented the use of local observations to monitor possible trends in the concentration of this species. Here we present and analyse long-term measurements of atmospheric OH concentrations, which were taken between 1999 and 2003 at the Meteorological Observatory Hohenpeissenberg in southern Germany. We find that the concentration of OH can be described by a surprisingly linear dependence on solar ultraviolet radiation throughout the measurement period, despite the fact that OH concentrations are influenced by thousands of reactants. A detailed numerical model of atmospheric reactions and measured trace gas concentrations indicates that the observed correlation results from compensations between individual processes affecting OH, but that a full understanding of these interactions may not be possible on the basis of our current knowledge of atmospheric chemistry. As a consequence of the stable relationship between OH concentrations and ultraviolet radiation that we observe, we infer that there is no long-term trend in the level of OH in the Hohenpeissenberg data set.

...