Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38796682

RESUMEN

OBJECTIVE: TNF inhibitors (TNFi) comprise 5 products whose structure and signalling differ. An individual patient with a rheumatic disease may respond to one TNFi but not to another. In addition, 30-40% of the patients respond inadequately to TNFi. The different TNFi downstream signalling may lead to their clinical efficacy. Several reports showed that TNFi exhibited differential effects on Th17 cells. We analyzed the different TNFi effects on IL-17A expression in the peripheral blood mononuclear cells (PBMCs) of patients with rheumatic diseases in order to evaluate the predictive capability of responses in an ex-vivo setting. METHODS: PBMCs were co-cultured with the different TNFi or medium (control), and IL-17A mRNA levels were analyzed by qPCR. IL-17A expression levels in response to 4 TNFi (except certolizumab pegol) were compared with control. IL-17A expression in the assay was correlated to the clinical responses. Assay sensitivity and specificity for distinguishing responders from non-responders was calculated by receiver-operating characteristic (ROC) analysis. RESULTS: The results of a retrospective cohort of patients with rheumatic diseases (n = 82) correlated with their therapeutic responses to the different TNFi with 89.5% accuracy. The assay predicted the responses of a prospective cohort (n = 54) to specific TNFi with 79% accuracy. CONCLUSION: This functional assay could assist in predicting the odds for response to TNFi therapy, indicating whether a given patient is likely to respond to a specific TNFi.

2.
Glia ; 72(6): 1117-1135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450767

RESUMEN

Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.


Asunto(s)
Factores de Transcripción TFIII , Factores de Transcripción TFII , Síndrome de Williams , Ratones , Animales , Microglía , Síndrome de Williams/genética , Neuronas/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción TFIII/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
3.
Adv Drug Deliv Rev ; 207: 115218, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38403255

RESUMEN

Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.


Asunto(s)
Vaina de Mielina , Trastornos del Neurodesarrollo , Humanos , Vaina de Mielina/metabolismo , Trastornos del Neurodesarrollo/tratamiento farmacológico , Trastornos del Neurodesarrollo/metabolismo , Sistemas de Liberación de Medicamentos , Oligodendroglía/metabolismo
4.
Commun Biol ; 6(1): 1269, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097729

RESUMEN

Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.


Asunto(s)
Factores de Transcripción TFIII , Síndrome de Williams , Humanos , Autofagia/genética , Heterocigoto , Neuronas/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Síndrome de Williams/genética , Síndrome de Williams/metabolismo
5.
Biomedicines ; 11(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37626769

RESUMEN

Williams syndrome (WS) is a neurodevelopmental disorder characterized by distinctive cognitive and personality profiles which also impacts various physiological systems. The syndrome arises from the deletion of about 25 genes located on chromosome 7q11.23, including Gtf2i. Prior research indicated a strong association between pre-natal Gtf2i deletion, and the hyper-social phenotypes observed in WS, as well as myelination deficits. As most studies addressed pre-natal Gtf2i deletion in mouse models, post-natal neuronal roles of Gtf2i were unknown. To investigate the impact of post-natal deletion of neuronal Gtf2i on hyper-sociability, we intravenously injected an AAV-PHP.eB virus expressing Cre-recombinase under the control of αCaMKII, a promoter in a mouse model with floxed Gtf2i. This targeted deletion was performed in young mice, allowing for precise and efficient brain-wide infection leading to the exclusive removal of Gtf2i from excitatory neurons. As a result of such gene deletion, the mice displayed hyper-sociability, increased anxiety, impaired cognition, and hyper-mobility, relative to controls. These findings highlight the potential of systemic viral manipulation as a gene-editing technique to modulate behavior-regulating genes during the post-natal stage, thus presenting novel therapeutic approaches for addressing neurodevelopmental dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA