Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38247233

RESUMEN

Influenza A virus subtype H3N2 is a highly infectious respiratory virus that is responsible for global seasonal flu epidemics. The current study was designed to investigate the antiviral activity of 150 phytocompounds of North Western Himalayas medicinal plants by molecular docking. Two target proteins of hemagglutinin of influenza virus A (PDB ID 4WE8) and Influenza virus H3N2 nucleoprotein - R416A mutant (PDB ID 7NT8) are selected for this study. Molecular docking was done by AutoDock vina tool, toxicity and drug-likeness prediction was done by protox II and Moleinspiration. MD simulation of best protein-ligand complexes was done by using Gromacs, version 2021.5. Molecular docking and toxicity data revealed that clicoemodin and rumexocide showed the best binding with both target proteins 4WEB & 7NT8. Clicoemodin showed the -7.5 KJ/mol binding energy with 4WE8 and 7NT8. Similarly, rumexoside showed the -7.6 KJ/mol binding energy with 4WE8 and -7.6 KJ/mol with 7NT8. Furthermore, Molecular dynamic simulation and MMPBSA binding free energy validated the stability of protein-ligand complexes. The current study suggested that clicoemodin and rumexocide are the promising inhibitors of H3N2 proteins hemagglutinin of influenza virus A and Influenza virus H3N2 nucleoprotein - R416A mutant, though there is further in vitro and in vivo validation is required.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 42(5): 2726-2737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37177811

RESUMEN

Medicinal plants are used from prehistoric time to cure various life-threatening bacterial diseases. Acorus calamus is an important medicinal plant widely used to cure gastrointestinal, respiratory, kidney and liver disorders. The objective of the current research was to investigate the interaction of major phytoconstituents of Acorus calamus with bacterial (6VJE) and fungal (1EA1) protein targets. Protein-ligand interactions were estimated using the AutoDock software, drug likeness was predicted by using the molinspiration server and toxicity was predicted with the swissADME and protox II servers. MD simulation of phytocompounds with the best profiles was done on the GROMACS software for 100 ns. Molecular docking results showed among all the selected major phytoconstituents, that ß-cadinene showed best binding interaction in complex with bacterial (6VJE) and fungal (1EA1) protein targets with binding energy -7.66 ± 0.1 and -7.73 ± 0.15 kcal mol-1, respectively. Drug likeness and toxicity predictions showed that ß-cadinene follows all rules of drug likeness and toxicity. MD simulation study revealed that ß-cadinene fit in binding pocket of bacterial and fungal targets and found to be stable throughout the duration of the simulation. Based on the observations from this in-silico study it is being proposed that ß-cadinene, a major phytocompound of Acorus calamus, can be considered for the treatment of bacterial and fungal infections since the study shows that it might be one of the compounds that contributes majorly to the plant's biological activity. This study needs in vitro and in vivo validation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Acorus , Antiinfecciosos , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Simulación por Computador , Programas Informáticos
3.
3 Biotech ; 13(1): 36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36619821

RESUMEN

In the last three years, COVID-19 has impacted the world with back-to-back waves leading to devastating consequences. SARS-CoV-2, the causative agent of COVID-19, was first detected in 2019 and since then has spread to 228 countries. Even though the primary focus of research groups was diverted to fight against COVID-19, yet no dedicated drug has been developed to combat the emergent life-threatening medical conditions. In this study, 35 phytocompounds and 43 drugs were investigated for comparative docking analysis. Molecular docking and virtual screening were performed against SARS-CoV-2 spike glycoprotein of 13 variants using AutoDock Vina tool 1.5.6 and Discovery Studio, respectively, to identify the most efficient drugs. Selection of the most suitable compounds with the best binding affinity was done after screening for toxicity, ADME (absorption, distribution, metabolism and excretion) properties and drug-likeliness. The potential candidates were discovered to be Liquiritin (binding affinities ranging between -7.0 and -8.1 kcal/mol for the 13 variants) and Apigenin (binding affinities ranging between -6.8 and -7.3 kcal/mol for the 13 variants) based on their toxicity and consistent binding affinity with the Spike protein of all variants. The stability of the protein-ligand complex was determined using Molecular dynamics (MD) simulation of Apigenin with the Delta plus variant of SARS-CoV-2. Furthermore, Liquiritin and Apigenin were also found to be less toxic than the presently used drugs and showed promising results based on in silico studies, though, confirmation using in vitro studies is required. This in-depth comparative investigation suggests potential drug candidates to fight against SARS-CoV-2 variants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03450-6.

4.
Indian J Pharmacol ; 55(6): 385-394, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38174535

RESUMEN

Thymus serpyllum L. from the Lamiaceae family is an underexplored perennial medicinal shrub with traditional usage in treating respiratory and gastrointestinal issues in the upper foothills of India. This review aims to provide a comprehensive assessment of current knowledge concerning the traditional uses, phytochemistry, and pharmacology of T. serpyllum. The primary objective is to collect updated information on this plant and encourage further in vivo and in vitro research to validate local claims. Notably, the essential oil derived from T. serpyllum has gained significant attention as a plant-derived product due to its diverse pharmacological properties, including antioxidative, antimicrobial, anti-inflammatory, and anticancer activities. Ethnomedicinal research revealed a vast scope of T. serpyllum in developing new drugs to address numerous health sector challenges. While T. serpyllum has been used widely, pharmacological studies are not enough. Most studies are either in vivo or in vitro. More studies are required to assess these medicinal claims through well-planned pharmacological experiments. This review will provide the groundwork for future research. While T. serpyllum has been put to considerable conventional use, pharmacological studies are insufficient; most studies are either in vivo or in vitro. More compound isolation, comprehensive pharmacological analysis, and exploration of food applications are vital areas to investigate.


Asunto(s)
Lamiaceae , Fitoterapia , Etnofarmacología , Medicina Tradicional , India , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/toxicidad
5.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956923

RESUMEN

Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.


Asunto(s)
Bacopa , Infecciones Urinarias , Antibacterianos/farmacología , Bacopa/química , Etanol , Klebsiella pneumoniae , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteus mirabilis , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
6.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807321

RESUMEN

Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.


Asunto(s)
Neoplasias de la Mama , Foeniculum , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Ligandos , Limoneno , Simulación del Acoplamiento Molecular
7.
Front Microbiol ; 13: 813358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242118

RESUMEN

The WHO announced coronavirus disease 2019 (COVID-19) as a pandemic disease globally on March 11, 2020, after it emerged in China. The emergence of COVID-19 has lasted over a year, and despite promising vaccine reports that have been produced, we still have a long way to go until such remedies are accessible to everyone. The immunomodulatory strategy has been kept at the top priority for the research agenda for COVID-19. Corticosteroids have been used to modulate the immune response in a wide range of diseases for the last 70 years. These drugs have been shown to avoid and reduce inflammation in tissues and the bloodstream through non-genomic and genomic effects. Now, the use of corticosteroids increased the chance of survival and relief by combating the viral strong inflammatory impacts and has moved to the forefront in the management of patients seeking supplemental oxygen. The goal of this review is to illuminate dexamethasone and methylprednisolone, i.e., in terms of their chemical and physical properties, role in COVID-19 patients suffering from pneumonia, the proposed mode of action in COVID-19, pharmacokinetics, pharmacodynamics, clinical outcomes in immunocompromised populations with COVID-19, interaction with other drugs, and contradiction to explore the trends and perspectives for future research. Literature was searched from scientific databases such as Science Direct, Wiley, Springer, PubMed, and books for the preparation of this review. The RECOVERY trial, a massive, multidisciplinary, randomized, and open-label trial, is mainly accountable for recommendations over the usage of corticosteroids in COVID-19 patients. The corticosteroids such as dexamethasone and methylprednisolone in the form of medication have anti-inflammatory, analgesic, and anti-allergic characteristics, including the ability to inhibit the immune system. These drugs are also recommended for treating symptoms of multiple ailments such as rheumatic and autoimmune diseases, leukemia, multiple myeloma, and Hodgkin's and non-Hodgkin's lymphoma along with other drugs. Toxicology studies proved them safe usually at low dosage via oral or other routes.

8.
Curr Pharmacol Rep ; 8(2): 149-170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281252

RESUMEN

The aim of the present study was to test the binding affinity of methylxanthines (caffeine/theine, methylxanthine, theobromine, theophylline and xanthine) to three potential target proteins namely Spike protein (6LZG), main protease (6LU7) and nucleocapsid protein N-terminal RNA binding domain (6M3M) of SARS-CoV-2. Proteins and ligand were generated using AutoDock 1.5.6 software. Binding affinity of methylxanthines with SARS-CoV-2 target proteins was determined using Autodock Vina. MD simulation of the best interacting complexes was performed using GROMACS 2018.3 (in duplicate) and Desmond program version 2.0 (academic version) (in triplicate) to study the stabile interaction of protein-ligand complexes. Among the selected methylxanthines, theophylline showed the best binding affinity with all the three targets of SARS-CoV-2 (6LZG - 5.7 kcal mol-1, 6LU7 - 6.5 kcal mol-1, 6M3M - 5.8 kcal mol-1). MD simulation results of 100 ns (in triplicate) showed that theophylline is stable in the binding pockets of all the selected SARS-CoV-2 proteins. Moreover, methylxanthines are safer and less toxic as shown by high LD50 value with Protox II software as compared to drug chloroquine. This research supports the use of methylxanthines as a SARS-CoV-2 inhibitor. It also lays the groundwork for future studies and could aid in the development of a treatment for SARS-CoV-2 and related viral infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s40495-021-00276-3.

9.
PLoS One ; 17(3): e0265420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298541

RESUMEN

Human papillomavirus (HPV) induced cervical cancer is becoming a major cause of mortality in women. The present research aimed to identify the natural inhibitors of HPV-18 E1 protein (1R9W) from Himalayan herbs with lesser toxicity and higher potency. In this study, one hundred nineteen phytoconstituents of twenty important traditional medicinal plants of Northwest Himalayas were selected for molecular docking with the target protein 1R9W of HPV-18 E1 Molecular docking was performed by AutoDock vina software. ADME/T screening of the bioactive phytoconstituents was done by SwissADME, admetSAR, and Protox II. A couple of best protein-ligand complexes were selected for 100 ns MD simulation. Molecular docking results revealed that among all the selected phytoconstituents only thirty-five phytoconstituents showed the binding affinity similar or more than the standard anti-cancer drugs viz. imiquimod (-6.1 kJ/mol) and podofilox (-6.9 kJ/mol). Among all the selected thirty-five phytoconstituents, eriodictyol-7-glucuronide, stigmasterol, clicoemodin and thalirugidine showed the best interactions with a docking score of -9.1, -8.7, -8.4, and -8.4 kJ/mol. Based on the ADME screening, only two phytoconstituents namely stigmasterol and clicoemodin selected as the best inhibitor of HPV protein. MD simulation study also revealed that stigmasterol and clicoemodin were stable inside the binding pocket of 1R9W, Stigmasterol and clicoemodin can be used as a potential investigational drug to cure HPV infections.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Papillomavirus Humano 18 , Humanos , Simulación del Acoplamiento Molecular , Papillomaviridae , Estigmasterol , Neoplasias del Cuello Uterino/tratamiento farmacológico
10.
J Biomol Struct Dyn ; 40(8): 3789-3803, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33225862

RESUMEN

Rheum emodi Wall. (Himalayan rhubarb) has many pharmacological activities such as antioxidant, antimicrobial, antiviral, anticancer and wound healing. The present study was aimed to understand if major phytocompounds of Rheum emodi could bind proteins responsible for antibiotic resistance in bacterial and fungal pathogens and enhance the potency of antibiotics. The major phytocompounds of R. emodi (emodin, rhein-13c6 and chrysophenol dimethy ether) were retrieved from the Pubchem and target proteins were retrieved from RCSB protein data bank. The docking study was performed by using AutoDock vina software and Molinspiration, swiss ADME servers were used for the determination of Lipinski rule of 5, drug-likeness prediction respectively, whereas, admetSAR and Protox-II tools were used for toxicity prediction. To study the docking accuracy of protein-ligand complexes, MD simulation for 100 ns was done by using Desmond program version 2.0 (Academic version). Among all the selected phytocompounds, emodin showed the best binding affinity against bacterial (Penicillin binding protein 3, 3VSL and fungal target (cytochrome P450 14 alpha-sterol demethylase 1EA1) with binding energy -8.2 and -8.0 Kcal mol-1 respectively. Similarly, rhein-13C6 showed the best binding affinity against fungal target (n-myristoyl transferase 1IYL) with binding energy -8.0 Kcal mol-1 which is higher than antibacterial and antifungal antibiotics. All the selected phytocompounds also fulfill Lipinski rule, non-carcinogenic and non-cytotoxic in nature. These compounds also showed high LD50 value showing non-toxicity of these phytocompounds. MD simulation studies of phytocompounds (emodin and rhein-13C6) define the stability of protein-ligand complexes with in 100 ns time scale.Communicated by Freddie R. Salsbury.


Asunto(s)
Emodina , Rheum , Antibacterianos/farmacología , Bacterias , Farmacorresistencia Microbiana , Ligandos , Simulación del Acoplamiento Molecular , Rheum/química
11.
J Ethnopharmacol ; 282: 114589, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492321

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY: The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS: Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS: Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION: The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.


Asunto(s)
Furanos/farmacología , Lignanos/farmacología , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium , Zingiber officinale , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , India , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular/métodos , Extractos Vegetales/farmacología , Plantas Medicinales , Infecciones por Salmonella/microbiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Serogrupo
12.
J Biomol Struct Dyn ; 40(20): 10383-10402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34238127

RESUMEN

Wild thyme (Thymus serpyllum L.) of family Laminaceae is an unexplored perennial medicinal shrub. Aerial part of this plant is traditionally used for the treatment of respiratory and gastrointestinal problems. The current study was designed to evaluate the GC-MS, antimicrobial and synergistic potential of T. serpyllum essential oil (TEO). Chemical characterization of TEO showed the presence of thymol (15.79%), Phenol, 2-(1,1-dimethylethyl) (11.55%), o-Cymene (10.96%) as major phytocompounds. Antimicrobial activity of TEO in terms zone of inhibition (ZOI) varied from 13.66 ± 0.58 mm to 33.66 ± 1.52 mm, while, thymol (10%, v/v) showed ZOI ranged from 15.5 ± 0.5 mm to 26.33 ± 2.08 mm against tested bacterial and fungal species. MIC of TEO was 0.039% to 0.078% against tested bacterial and fungal species, whereas, thymol showed 1.25% to 2.5% MIC against tested bacterial and fungal species. Different combinations of TEO (2MIC to ½MIC) and thymol (2MIC to ½MIC) with antibacterial and antifungal antibiotics (2MIC to ½MIC) were found to increase the efficacy of antibiotics by 4-130 folds against bacterial and fungal pathogens. Molecular docking showed the good binding of thymol with both bacterial and fungal targets. Whereas MD simulation showed the stability of thymol complexed with target proteins over 100 ns time scale. Thymol also fulfills the Lipinski rule and showed characteristics similar to that of drugs. Therefore, it can be concluded from the present study that TEO and its major phytocompound, thymol can act as a bioactivity enhancer of antibacterial and antifungal antibiotics and could be used as a potential candidate to fight against antimicrobial drug resistance.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aceites Volátiles , Thymus (Planta) , Thymus (Planta)/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antifúngicos/farmacología , Antifúngicos/química , Timol/farmacología , Timol/análisis , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
13.
J Biomol Struct Dyn ; 40(24): 14131-14145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34787050

RESUMEN

Cymbopogon citratus (DC.) Stapf is an aromatic perennial herb of Gramineae (Poaceae) family and is known for its application in food and healthcare industry. The present study aimed to evaluate anti-inflammatory and antioxidant potential of C. citratus essential oil (CEO) through in vitro and in silico studies. Chemical characterization of CEO was done using Gas chromatography-mass spectrophotometry (GC-MS) method. In vitro antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric ion reducing antioxidant power (FRAP) assays, while egg albumin denaturation method was used to evaluate in vitro anti-inflammatory activity of CEO. Molecular docking investigation of major phytocompounds of CEO was done using Autodock vina software against human peroxiredoxin 5 (PDB ID: 1HD2) and human cyclooxygenase 2 (PDB ID: 5IKQ) proteins, which were further analyzed through molecular dynamics (MD) simulation using YASARA. GC-MS analysis of CEO showed the presence of geranial (48%) neral (34.04%), ß-myrcene (9.77%), geraniol (1.88%), linalool (0.84%), isogeranial (0.81%), ß-caryophyllene (0.80%), D-limonene (0.51%) as major constituents. CEO showed significant antioxidant activity with DPPH (IC50-47.53 ± 2.16 µg/ml), FRAP (IC50-30.7 ± 0.31 µM), and ABTS assays (IC50-27.87 ± 0.09 µg/ml). CEO also exhibited significant in-vitro anti-inflammatory activity with IC50-29.71 ± 1.95 µg/ml as compared to that of Diclofenac sodium (IC50-36.52 ± 1.95 µg/ml). Molecular docking revealed that ß-caryophyllene showed considerable binding potential with human peroxiredoxin 5 receptor (-6.0 kcal/mol) and human cyclooxygenase 2 receptor (-10.1 kcal/mol). Further, MD simulations demonstrated considerable and stable interactions of ß-caryophyllene with 1HD2 and 5IKQ proteins up to 100 ns. Drug-likeness and ADME/T features also showed that ß-caryophyllene can be used as a potential candidate to replace the synthetic anti-inflammatory drugs with side effects and also act as natural antioxidants.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cymbopogon , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Cymbopogon/química , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química
14.
Drug Deliv Transl Res ; 12(10): 2501-2517, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34782995

RESUMEN

Azelaic acid (AzA) is a USFDA bioactive prescribed against acne vulgaris. It possesses delivery challenges like poor aqueous solubility, low skin-penetrability, and dose-dependent side effects, which could be overcome by its synergistic combination with tea tree oil (TTO) as a microemulsion (ME)-based hydrogel composite. AzA-TTO ME was prepared to employ pseudo-ternary phase diagram construction. The best AzA-TTO ME was of uniform size (polydispersity index < 0.7), nano-range (~357.4 ± 2% nm), transmittance (> 90%), and negative zeta potential (-1.42 ± 0.25% mV) values. ME hydrogel composite with optimum rheological and textural attributes showed better permeation, retention, and skin-compliant characteristics, vis-a-vis marketed formulation (Aziderm™) when evaluated in Wistar rat skin. In vitro antibacterial efficacy in bacterial strains, i.e., Staphylococcus aureus, Propionibacterium acne, and Staphylococcus epidermidis, was evaluated employing agar well plate diffusion and broth dilution assay. ME hydrogel has shown an increase in zone of inhibition by two folds and a decrease in minimum inhibitory concentration (MIC) by eightfold against P. acnes vis-a-vis AzA. Finally, ME hydrogel composite exhibited a better reduction in the papule density (93.75 ± 1.64%) in comparison to Aziderm™ 72.69 ± 4.67%) on acne as developed in rats by inducing testosterone. Thus, the developed AzA-TTO ME hydrogel composite promises an efficacious and comparatively safer drug delivery system for the topical therapy of acne vulgaris.


Asunto(s)
Acné Vulgar , Aceite de Árbol de Té , Acné Vulgar/inducido químicamente , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Animales , Ácidos Dicarboxílicos , Hidrogeles/uso terapéutico , Propionibacterium , Ratas , Ratas Wistar , , Testosterona/uso terapéutico , Árboles
15.
Nat Prod Res ; 36(17): 4532-4535, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34825625

RESUMEN

Hypertension has been a significant cause of death due to elevated blood pressure worldwide. The results of molecular docking showed out of selected 40 compounds, chasmanthin (-11.05 kcal/mol), and palmarin (-11.22 kcal/mol) showed strong binding with angiotensin-converting enzyme (ACE) target. The inhibitory action of the selected phytocompounds for ACE protein was also validated by comparing it with the reference drugs, lisinopril (-9.42 kcal/mol), and enalapril (-5.07 kcal/mol). MD simulations study of 100 ns also demonstrated stability of chasmanthin, and palmarin within the active sites of ACE protein. Molecular mechanics generalised born surface area (MMGBSA) analysis of MD trajectories exhibited significant binding of palmarin with ACE (dG Bind= -38.65 ± 2.59 kcal/mol) and chasmanthin (dG Bind= -37.64 ± 2.67 kcal/mol). Drug likeness and pharmacokinetics properties of palmarin and chasmanthin was also found to be permissible, thereby suggesting the use of chasmanthin and palmarin as a novel target inhibitor against ACE protein to combat hypertension.


Asunto(s)
Hipertensión , Plantas Medicinales , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Angiotensinas , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Plantas Medicinales/metabolismo
16.
Ther Deliv ; 13(1): 13-29, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842461

RESUMEN

Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.


Asunto(s)
Acné Vulgar , Melaleuca , Aceite de Árbol de Té , Acné Vulgar/tratamiento farmacológico , Animales , Antibacterianos , Ácidos Dicarboxílicos , Excipientes , Hidrogeles , Ratas , Ratas Wistar , Aceite de Árbol de Té/uso terapéutico
17.
Biomedicines ; 9(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34680519

RESUMEN

Medicinal plants can be used as natural therapeutics to treat diseases in humans. Enteric bacteria possess efflux pumps to remove bile salts from cells to avoid potential membrane damage. Resistance to bile and antibiotics is associated with the survival of Salmonella enterica subspecies enterica serovar Typhimurium (S. typhimurium) within a host. The present study aimed to investigate the binding affinity of major phytocompounds derived from 35 medicinal plants of the North Western Himalayas with the RamR protein (PDB ID 6IE9) of S. typhimurium. Proteins and ligands were prepared using AutoDock software 1.5.6. Molecular docking was performed using AutoDock Vina and MD simulation was performed at 100 ns. Drug likeness and toxicity predictions of hit phytocompounds were evaluated using molinspiration and ProTox II online servers. Moreover, docking, drug likeness, and toxicity results revealed that among all the selected phytocompounds, beta-sitosterol exhibited the most efficacious binding affinity with RamR protein (PDB ID 6IE9) and was nontoxic in nature. MD simulation data revealed that beta-sitosterol in complex with 6IE9 can be used as an antimicrobial. Furthermore, beta-sitosterol is stable in the binding pocket of the target protein; hence, it can be further explored as a drug to inhibit resistance-nodulation-division efflux pumps.

18.
Curr Pharmacol Rep ; 7(4): 135-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306988

RESUMEN

COVID-19, the disease caused by SARS-CoV-2, has been declared as a global pandemic. Traditional medicinal plants have long history to treat viral infections. Our in silico approach suggested that unique phytocompounds such as emodin, thymol and carvacrol, and artemisinin could physically bind SARS-CoV-2 spike glycoproteins (6VXX and 6VYB), SARS-CoV-2 B.1.351 South Africa variant of Spike glycoprotein (7NXA), and even with ACE2 and prevent the SARS-CoV-2 binding to the host ACE2, TMPRSS2 and neutrapilin-1 receptors. Since Chloroquine has been looked as potential therapy against COVID-19, we also compared the binding of chloroquine and artemisinin for its interaction with spike proteins (6VXX, 6VYB) and its variant 7NXA, respectively. Molecular docking study of phytocompounds and SARS-CoV-2 spike protein was performed by using AutoDock/Vina software. Molecular dynamics (MD) simulation was performed for 50ns. Among all the phytocompounds, molecular docking studies revealed lowest binding energy of artemisinin with 6VXX and 6VYB, with Etotal -10.5 KJ mol-1 and -10.3 KJ mol-1 respectively. Emodin showed the best binding affinity with 6VYB with Etotal -8.8 KJ mol-1and SARS-CoV-2 B.1.351 variant (7NXA) with binding energy of -6.4KJ mol-1. Emodin showed best interactions with TMPRSS 2 and ACE2 with Etotal of -7.1 and -7.3 KJ mol-1 respectively, whereas artemisinin interacts with TMPRSS 2 and ACE2 with Etotal of -6.9 and -7.4 KJ mol-1 respectively. All the phytocompounds were non-toxic and non-carcinogenic. MD simulation showed that artemisinin has more stable interaction with 6VYB as compared to 6VXX, and hence proposed as potential phytochemical to prevent SARS-CoV-2 interaction with ACE-2 receptor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40495-021-00259-4.

19.
Phytother Res ; 35(11): 6089-6100, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34324240

RESUMEN

The steady rise in the emergence of antibiotic-resistant fungal pathogens has rendered most of the clinical antibiotics available in the market to be ineffective. Therefore, alternative strategies are required to tackle drug-resistant fungal infections. An effective solution is to combine the available antibiotics with adjuvants such as phytochemicals or essential oils to enhance the efficacy and activity of antibiotics. The present review aims to summarize the studies on synergistic combinations of essential oils and anti-fungal antibiotics. The current findings, methods used for measuring synergistic effects, possible mechanisms of synergism, and future perspectives for developing synergistic EO-antibiotic therapeutic formulations are discussed in this study. Several essential oils exhibit synergistic effect in combination with antibiotics against human fungal pathogens such as Candida albicans. The possible mechanisms of synergy exhibited by essential oil- antibiotic combinations in fungi include disruption of cell wall structure/ ergosterol biosynthesis pathway, enhanced transdermal penetration of antibiotics, alterations in membrane permeability, intracellular leakage of cellular contents, inhibition of germ tube formation or fungal biofilm formation, and competition for a primary target. Synergistic combination of essential oils and antibiotics can prove to be a valid and pragmatic alternative to develop drugs with increased drug-efficacy, and low toxicity.


Asunto(s)
Aceites Volátiles , Antibacterianos/farmacología , Antifúngicos/farmacología , Candida albicans , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología
20.
Curr Pharm Biotechnol ; 22(15): 2085-2093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33430724

RESUMEN

AIM: The aim of present investigation is to identify the potential targets for Thymidylate Synthase and Amp-C ß-lactamase from non-alkaloidal fractions of Moringa oleifera leaves. BACKGROUND: Bioactive constituents from medicinal plants, either as pure compounds or as crude forms, provide vast opportunities for new drug discoveries. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, mainly from edible plants, has grown throughout the world. Moringa oleifera has an impressive range of medicinal uses with high nutritional value. Therefore, this medicinal plant has been used widely in traditional Indian medicine for anti-inflammation, anticancer and antibacterial infections. OBJECTIVES: The primary objective is to identify the phytoconstituents present in the maximum proportion in non-alkaloidal fractions of ethanolic leaf extract of Moringa oleifera. Then, the identified phytoconstituents were used to ensure the potential target molecules for binding affinity towards the target proteins viz. Thymidylate Synthase (1HVY) and Amp-C beta-lactamase (1FSY) by docking analysis. METHODS: In present investigation, ethanolic extract of Moringa leaves was prepared and then fractionated on the basis of presence/absence of alkaloids. The antimicrobial activity of different fractions of ethanolic leaf extract was evaluated against various pathogens. Later, after this, bioactive molecules present in the non-alkaloidal fractions of ethanolic leaf extract were accomplished through GC-MS analysis, and finally, the identified phytocompounds were analyzed through docking studies to evaluate their affinity for target proteins viz. Thymidylate Synthase (1HVY) and Amp-C ß-lactamase (1FSY). RESULTS: The antimicrobial activity of non-alkaloidal fractions of ethanolic leaf extract was evaluated against various pathogens which exhibited significant antimicrobial activity. Twenty phytocompounds were identified as gas chromatogram of non-alkaloidal fractions (chloroform and ethyl acetate) of leaf extract of M. oleifera; Four most prominent compounds having highest peak area percentage were identified as Ethane, 1,1,2,2-tetrachloro, (46.45%) 2-Propanone, 1,1,3-trichloro, (13.77%) Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl (17.87%) and 2,4-Dichlorodiphenylsulfone (17.64%). Other notable compounds were 9,12-Octadecadienoic acid (Z,Z) (14.06%), Oleic acid, 3- (octadecyloxy)propyl ester (12.41%), Fluoranthene (6.98%), Phenol, 2,4-bis( 1,1-dimethylethyl) (4.16%) and Phthalic acid, butyl nonyl ester (3.47%). Only, five compounds viz. 2,6-Bis(1,1- dimethylethyl)phenol(C1), Dodecamethylcyclohexasiloxane(C2), Chlorodimethylethylsilane(C3), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1HVY with highest docking score of -178.51Kcal/mol, - 231.65Kcal/mol, -129.18Kcal/mol, - 173.10Kcal/mol and -220.78Kcal/mol, respectively. In addition, three compounds viz. Dodecamethylcyclohexasiloxane( C2), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1FSY with highest docking score of -137.23Kcal/mol, -54.34Kcal/mol and -153.84Kcal/mol, respectively. CONCLUSION: Moringa plant may provide incredible capabilities to develop pharmacological products. The present finding demonstrated that Moringa oleifera is an excellent plant candidate to be used for improving the health of communities.


Asunto(s)
Alcaloides , Moringa oleifera , Extractos Vegetales , Timidilato Sintasa/antagonistas & inhibidores , Inhibidores de beta-Lactamasas/farmacología , Alcaloides/farmacología , Moringa oleifera/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , beta-Lactamasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...