Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(1): 98-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985898

RESUMEN

The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.


Asunto(s)
Peces , Conducta Social , Animales , Femenino , Peces/fisiología , Genoma , Genómica , Perfilación de la Expresión Génica
2.
Nat Commun ; 14(1): 6027, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758730

RESUMEN

One of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish. We find that groups from artificially selected lines remain more polarized than control groups in the presence of a threat. Neuroanatomical measurements of polarization-selected individuals indicate changes in brain regions previously suggested to be important regulators of perception, fear and attention, and motor response. Additional visual acuity and temporal resolution tests performed in polarization-selected and control individuals indicate that observed differences in predator inspection and schooling behavior should not be attributable to changes in visual perception, but rather are more likely the result of the more efficient relay of sensory input in the brain of polarization-selected fish. Our findings highlight that brain morphology may play a fundamental role in the evolution of coordinated movement and anti-predator behavior.


Asunto(s)
Poecilia , Animales , Conducta Predatoria , Neuroanatomía , Escolaridad , Movimiento (Física)
3.
Sci Total Environ ; 878: 163132, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001651

RESUMEN

The extensive radioactive fallout resulting from the 1986 Chornobyl accident caused tree death near the nuclear power plant and perturbed trees communities throughout the whole Chornobyl exclusion zone. Thirty years into the post-accident period, the radiation continues to exert its fatal effects on the surviving trees. However, to what extent the continuous multi-decadal radiation exposure has affected the radial tree growth and its sensitivity to climate variation remains unascertained. In this comparative study, we measure the Scots pine radial growth and quantify its response to climate at two sites along the western track of the nuclear fallout that received significantly different doses of radiation in 1986. The common features of the two sites allow us to disentangle and intercompare the effects of sub-lethal and moderate radiation doses on the pine's growth and climatic sensitivity. We extend the response function analysis by making the first use of the Full-Duration at Half-Maximum FDHM method in dendrochronology and apply the double-moving window approach to detect the main patterns of the growth-to-climate relationships and their temporal evolution. The stand exposed to sub-lethal radiation shows a significant radial growth reduction in 1986 with a deflection period of one year. The stand exposed to moderate radiation, in contrast, demonstrates no significant decrease in growth either in 1986 or in the following years. Beyond the radiation effects, the moving response function and FDHM enabled us to detect several mutual patterns in the growth-to-climate relationships, which are seemingly unrelated to the nuclear accident. To advance our predictive understanding of the response of forest ecosystems to a massive radioactive contamination, future studies should include quantitative wood anatomy techniques.


Asunto(s)
Accidente Nuclear de Chernóbil , Pinus sylvestris , Ecosistema , Madera , Bosques
4.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268362

RESUMEN

Collective motion occurs when individuals use social interaction rules to respond to the movements and positions of their neighbors. How readily these social decisions are shaped by selection remains unknown. Through artificial selection on fish (guppies, Poecilia reticulata) for increased group polarization, we demonstrate rapid evolution in how individuals use social interaction rules. Within only three generations, groups of polarization-selected females showed a 15% increase in polarization, coupled with increased cohesiveness, compared to fish from control lines. Although lines did not differ in their physical swimming ability or exploratory behavior, polarization-selected fish adopted faster speeds, particularly in social contexts, and showed stronger alignment and attraction responses to multiple neighbors. Our results reveal the social interaction rules that change when collective behavior evolves.

5.
Genetics ; 214(3): 577-587, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911453

RESUMEN

For most animals, feeding includes two behaviors: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviors. However, most methods of measuring feeding in worms quantify either foraging behavior or food intake, but not both. Imaging the depletion of fluorescently labeled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence, so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from within the cluster before foraging collectively for more food; similarly, during large population swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and generating insights into the spatial pattern of food consumption.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Ingestión de Alimentos/genética , Receptores de Neuropéptido Y/genética , Receptores Nicotínicos/genética , Animales , Caenorhabditis elegans/microbiología , Ingestión de Alimentos/fisiología , Escherichia coli/química , Conducta Alimentaria/fisiología , Proteínas Mutantes/genética , Mutación/genética
6.
Front Plant Sci ; 10: 96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804967

RESUMEN

The radial growth of pedunculate oak (Quercus robur), a species often ecologically dominating European deciduous forests, is closely tied up with local environmental variables. The oak tree-ring series usually contain a climatic and hydrologic signal that allows assessing the main drivers of tree growth in various ecosystems. Understanding the climate-growth relationship patterns in floodplains is important for providing insights into the species persistence and longevity in vulnerable riverine ecosystems experiencing human-induced hydrology alteration. Here, we use 139 years long instrumental records of local temperature, precipitation, and water levels in the Dnipro River in Kyiv to demonstrate that the implementation of river regulation has decoupled the established relationship between the radial growth of floodplain oak and local hydro-climatic conditions. Before the river flow has been altered by engineering modifications of 1965-1977, the water level in the Dnipro River was the key driver of oak radial growth, as reflected in the tree-ring width and earlywood width. The construction of two dams has altered the seasonal distribution of water level diminishing the positive effect of high water on oak growth and subsequently reversing this trend to negative, resulting from a seasonal ground water surplus. The decrease in the correlation between oak growth indices and the river's water level in April-June was unprecedentedly rapid and clearly distinguishable among other changes in the growth-to-climate relationship. Our findings further demonstrate that trees growing in areas exposed to urban development are the most susceptible to downside effects of river regulation.

7.
R Soc Open Sci ; 5(8): 171935, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30224983

RESUMEN

Multiple countries have recently experienced extreme political polarization, which, in some cases, led to escalation of hate crime, violence and political instability. Besides the much discussed presidential elections in the USA and France, Britain's Brexit vote and Turkish constitutional referendum showed signs of extreme polarization. Among the countries affected, Ukraine faced some of the gravest consequences. In an attempt to understand the mechanisms of these phenomena, we here combine social media analysis with agent-based modelling of opinion dynamics, targeting Ukraine's crisis of 2014. We use Twitter data to quantify changes in the opinion divide and parametrize an extended bounded confidence XY model, which provides a spatio-temporal description of the polarization dynamics. We demonstrate that the level of emotional intensity is a major driving force for polarization that can lead to a spontaneous onset of collective behaviour at a certain degree of homophily and conformity. We find that the critical level of emotional intensity corresponds to a polarization transition, marked by a sudden increase in the degree of involvement and in the opinion bimodality.

8.
Behav Processes ; 147: 13-20, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29248747

RESUMEN

Collective movement is achieved when individuals adopt local rules to interact with their neighbours. How the brain processes information about neighbours' positions and movements may affect how individuals interact in groups. As brain size can determine such information processing it should impact collective animal movement. Here we investigate whether brain size affects the structure and organisation of newly forming fish shoals by quantifying the collective movement of guppies (Poecilia reticulata) from large- and small-brained selection lines, with known differences in learning and memory. We used automated tracking software to determine shoaling behaviour of single-sex groups of eight or two fish and found no evidence that brain size affected the speed, group size, or spatial and directional organisation of fish shoals. Our results suggest that brain size does not play an important role in how fish interact with each other in these types of moving groups of unfamiliar individuals. Based on these results, we propose that shoal dynamics are likely to be governed by relatively basic cognitive processes that do not differ in these brain size selected lines of guppies.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conducta de Masa , Movimiento , Poecilia/anatomía & histología , Poecilia/fisiología , Animales , Tamaño de los Órganos
9.
R Soc Open Sci ; 4(4): 161056, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28484622

RESUMEN

While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.

10.
Artículo en Inglés | MEDLINE | ID: mdl-23767515

RESUMEN

We use computer simulations to study the onset of collective motion in systems of interacting active particles. Our model is a swarm of active Brownian particles with an internal energy depot and interactions inspired by the dissipative particle dynamics method, imposing pairwise friction force on the nearest neighbors. We study orientational ordering in a 2D system as a function of energy influx rate and particle density. The model demonstrates a transition into the ordered state on increasing the particle density and increasing the input power. Although both the alignment mechanism and the character of individual motion in our model differ from those in the well-studied Vicsek model, it demonstrates identical statistical properties and phase behavior.


Asunto(s)
Coloides/química , Difusión , Transferencia de Energía , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Termodinámica , Simulación por Computador , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...