Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Int J Pharm ; 663: 124536, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074648

RESUMEN

Vesicants are chemical warfare agents (CWAs) capable of causing severe skin damage and systemic toxicity. Melatonin, known for its anti-inflammatory and antioxidant properties, can mitigate the effects of these agents. Self-nano-emulsifying drug delivery systems (SNEDDS) containing a high melatonin concentration (5 %, 50 mg/g) were optimized using a quality-by-design approach from biocompatible, non-irritant excipients with a particle size of about 100 nm. The melatonin-loaded SNEDDS showed a 43-fold greater permeability than a conventional melatonin cream. Chemical stability at ambient temperature (25 °C) was maintained for one year. The preparation of optimised melatonin-loaded SNEDDS using a simple mixing method was compared to microfluidic micromixers. Mixing was successfully achieved using a 3D-printed (fused deposition modeling or stereolithography) T-shaped toroidal microfluidic chip (with a channel geometry optimized by computational fluid dynamics), resulting in a scalable, continuous process for the first time with a substantial reduction in preparation time compared to other conventional mixing approaches. No statistically significant differences were observed in the key quality attributes, such as particle size and melatonin loading, between mixing method till kinetic equilibrium solubility is reached and mixing using the 3D-printed micromixers. This scalable, continuous, cost-effective approach improves the overall efficiency of SNEDDS production, reduces the cost of quality control for multiple batches, and demonstrates the potential of continuous microfluidic manufacture with readily customizable 3D-printed micromixers at points of care, such as military bases.

2.
Drugs Context ; 132024.
Artículo en Inglés | MEDLINE | ID: mdl-38817803

RESUMEN

Background: For a medication dispensing service to function with quality, continuous evaluation is required, which is why it is necessary to have reliable measurement tools that make it possible. Quality indicators can serve as tools for managing quality, as they are variables that directly or indirectly measure changes in a situation and help evaluate the progress made in addressing it. This article aims to determine the feasibility and reliability of a quality indicator system for a drug dispensing service for paediatric outpatients in two Mexican hospitals. Methods: A study of the development type of health systems and services at a microlevel was conducted from October 2020 to October 2021 in the pharmaceutical service of two Mexican hospitals. To determine the feasibility of the quality indicators, a retrospective evaluation was performed, which considered the indicators that could be calculated with the available information to be feasible. To determine reliability, an inter-observer agreement study (Kappa (κ)) was performed. Results: The feasibility analysis revealed that all five reference indicators related to the structure were feasible in both hospitals. In the Infantil of the Californias hospital, all six process indicators evaluated were feasible, whilst only one was found feasible in H+ Querétaro. As for outcome indicators, only one was feasible in the Infantil of the Californias hospital. The causes of non-feasibility in both hospitals were the non-documentation of the primary data related to the stages of the process and the lack of instruments to measure patient satisfaction. The reliability of the indicators showed little variability. Conclusion: Although not all indicators were feasible, solutions were proposed so that the 15 reference indicators could be used if an organization decided to do so. The reliability of the indicators was demonstrated, evidencing the importance of the data sheet as a tool to generate valid reliable measures.This article is part of the Hospital pharmacy, rational use of medicines and patient safety in Latin America Special Issue: https://www.drugsincontext.com/special_issues/hospital-pharmacy-rational-use-of-medicines-and-patient-safety-in-latin-america/.

3.
Neuro Oncol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683135

RESUMEN

BACKGROUND: Cranial radiotherapy is standard of care for high-grade brain tumors and metastases; however, it induces debilitating neurocognitive impairments in cancer survivors, especially children. As the numbers of pediatric brain cancer survivors continue improving, the numbers of individuals developing life-long neurocognitive sequalae are consequently expected to rise. Yet, there are no established biomarkers estimating the degree of the irradiation-induced brain injury at completion of radiotherapy to predict the severity of the expected neurocognitive complications. We aimed to identify sensitive biomarkers associated with brain response to irradiation that can be measured in easily accessible clinical materials, such as liquid biopsies. METHODS: Juvenile mice were subjected to cranial irradiation with 0.5, 1, 2, 4 and 8 Gy. Cerebrospinal fluid (CSF), plasma and brains were collected at acute, subacute, and subchronic phases after irradiation, and processed for proteomic screens, molecular and histological analyses. RESULTS: We found that the levels of ectodysplasin A2 receptor (EDA2R), member of tumor necrosis factor receptor superfamily, increased significantly in the CSF after cranial irradiation, even at lower irradiation doses. The levels of EDA2R were increased globally in the brain acutely after irradiation and decreased over time. EDA2R was predominantly expressed by neurons, and the temporal dynamics of EDA2R in the brain was reflected in the plasma samples. CONCLUSIONS: We propose EDA2R as a promising potential biomarker reflecting irradiation-induced brain injury in liquid biopsies. The levels of EDA2R upon completion of radiotherapy may aid in predicting the severity of IR-induced neurocognitive sequalae at a very early stage after treatment.

4.
Biology (Basel) ; 13(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666867

RESUMEN

Marine microalgae are a rich reservoir of natural compounds, including bioactives. Nonetheless, these organisms remain fairly unexplored despite their potential biotechnological applications. Culture collections with diverse taxonomic groups and lifestyles are a good source to unlock this potential and discover new molecules for multiple applications such as the treatment of human pathologies or the production of aquaculture species. In the present work extracts from thirty-three strains (including twenty dinoflagellates, four diatoms and nine strains from seven other algal classes), cultivated under identical conditions, were examined for their antiviral, antibacterial, anti-inflammatory and anti-cancer activities. Among these, antiviral and anti-inflammatory activities were detected in a few strains while the antibacterial tests showed positive results in most assays. In turn, most trials did not show any anti-cancer activity. Significant differences were observed between species within the same class, in particular dinoflagellates, which were better represented in this study. These preliminary findings pave the way for an in-depth characterization of the extracts with highest signals in each test, the identification of the compounds responsible for the biological activities found and a further screening of the CCVIEO culture collection.

5.
iScience ; 27(4): 109346, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500830

RESUMEN

Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.

6.
Fish Shellfish Immunol ; 147: 109456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369070

RESUMEN

Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as ß-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood. In the present work, we evaluated the effect of a single intraperitoneal (ip) injection of zymosan A on fish survival against A. salmonicida infection. A single administration of this compound protected fish against A. salmonicida challenge and reduce the bacterial load in the head kidney one week after its administration. Transcriptome analyses of head kidney samples revealed several molecular mechanisms involved in the protection conferred by zymosan A and their regulation by long noncoding RNAs. The transcriptome profile of turbot exposed only to zymosan A was practically unaltered one week after ip injection. However, the administration of this immunostimulant induced significant transcriptomic changes once the fish were in contact with the bacteria and increased the survival of the infected turbot. Our results suggest that the restraint of the infection-induced inflammatory response, the management of apoptotic cell death, cell plasticity and cellular processes involving cytoskeleton dynamics support the protective effects of zymosan A. All this information provides insights on the cellular and molecular mechanisms involved in the protective effects of this widely used immunostimulant.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , ARN Largo no Codificante , Animales , Zimosan , Aeromonas salmonicida/fisiología , Inflamación , Perfilación de la Expresión Génica , Adyuvantes Inmunológicos
7.
Nat Prod Res ; : 1-6, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189356

RESUMEN

The inflorescences of Pseudognaphalium liebmannii are used as folk medicine to treat various respiratory diseases. In this work, we report the isolation of seven known flavones: 5-hydroxy-3,7-dimethoxyflavone 1, 5,8-dihydroxy-3,7-dimethoxyflavone 2, 5,7-dihydroxy-3,8-dimethoxyflavone 3 (gnaphaliin A), 3,5-dihydroxy-7,8-dimethoxyflavone 4 (gnaphaliin B), 3,5-dihydroxy-6,7,8-trimethoxyflavone 5, 3,5,7-trimethoxyflavone 6 and 3-O-methylquercetin 7. All these flavones except 1 and 6 showed a relaxant effect on guinea pig tracheal preparation with EC50 between 69.91 ± 15.32 and 118.72 ± 7.06 µM. Aminophylline (EC50 = 122.03 ± 7.05 µM) was used as a relaxant reference drug. The active flavones shifted the concentration-response curves of forskolin and nitroprusside leftward, and significantly reduced the EC50 values of these drugs. Furthermore, these flavones dose-dependently inhibited phosphodiesterase (PDE) in an in vitro assay. This reveals that the inflorescences of P. liebmannii contain several flavones with relaxant effect on airway smooth muscle and with PDEs inhibition that contribute to supporting the anti-asthmatic traditional use.

8.
PeerJ ; 11: e16585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089905

RESUMEN

Restricted movement among populations decreases genetic variation, which may be the case for the Montezuma quail (Cyrtonyx montezumae), a small game bird that rarely flies long distances. In the northern limit of its distribution, it inhabits oak-juniper-pine savannas of Arizona, New Mexico, and Texas. Understanding genetic structure can provide information about the demographic history of populations that is also important for conservation and management. The objective of this study was to determine patterns of genetic variation in Montezuma quail populations using nine DNA microsatellite loci. We genotyped 119 individuals from four study populations: Arizona, Western New Mexico, Central New Mexico, and West Texas. Compared to other quail, heterozygosity was low (H¯0 = 0.22 ± 0.04) and there were fewer alleles per locus (A = 2.41 ± 0.27). The global population genetic differentiation index RST = 0.045 suggests little genetic structure, even though a Bayesian allocation analysis suggested three genetic clusters (K = 3). This analysis also suggested admixture between clusters. Nevertheless, an isolation-by-distance analysis indicates a strong correlation (r = 0.937) and moderate evidence (P = 0.032) of non-independence between geographical and genetic distances. Climate change projections indicate an increase in aridity for this region, especially in temperate ecosystems where the species occurs. In this scenario, corridors between the populations may disappear, thus causing their complete isolation.


Asunto(s)
Ecosistema , Variación Genética , Humanos , Animales , Variación Genética/genética , Teorema de Bayes , Genética de Población , Codorniz
9.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37891922

RESUMEN

The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.

10.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760032

RESUMEN

The role of inflammation and immunity in the pathomechanism of neurodegenerative diseases has become increasingly relevant within the past few years. In this context, the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the activation of inflammatory responses by promoting the maturation and secretion of pro-inflammatory cytokines such as interleukin-1ß and interleukin-18. We hypothesized that the interplay between nuclear factor erythroid 2-related factor 2 (Nrf2) and NADPH oxidase 4 (NOX4) may play a critical role in the activation of the NLRP3 inflammasome and subsequent inflammatory responses. After priming mixed glial cultures with lipopolysaccharide (LPS), cells were stimulated with ATP, showing a significant reduction of IL1-ß release in NOX4 and Nrf2 KO mice. Importantly, NOX4 inhibition using GKT136901 also reduced IL-1ß release, as in NOX4 KO mixed glial cultures. Moreover, we measured NOX4 and NLRP3 expression in wild-type mixed glial cultures following LPS treatment, observing that both increased after TLR4 activation, while 24 h treatment with tert-butylhydroquinone, a potent Nrf2 inducer, significantly reduced NLRP3 expression. LPS administration resulted in significant cognitive impairment compared to the control group. Indeed, LPS also modified the expression of NLRP3 and NOX4 in mouse hippocampus. However, mice treated with GKT136901 after LPS impairment showed a significantly improved discrimination index and recovered the expression of inflammatory genes to normal levels compared with wild-type animals. Hence, we here validate NOX4 as a key player in NLRP3 inflammasome activation, suggesting NOX4 pharmacological inhibition as a potent therapeutic approach in neurodegenerative diseases.

11.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376065

RESUMEN

The purpose of this systematic review is to provide an overview of the existing knowledge on the therapeutic potential of melatonin to counteract the undesirable effects of chemotherapy in breast cancer patients. To this aim, we summarized and critically reviewed preclinical- and clinical-related evidence according to the PRISMA guidelines. Additionally, we developed an extrapolation of melatonin doses in animal studies to the human equivalent doses (HEDs) for randomized clinical trials (RCTs) with breast cancer patients. For the revision, 341 primary records were screened, which were reduced to 8 selected RCTs that met the inclusion criteria. We assembled the evidence drawn from these studies by analyzing the remaining gaps and treatment efficacy and suggested future translational research and clinical trials. Overall, the selected RCTs allow us to conclude that melatonin combined with standard chemotherapy lines would derive, at least, a better quality of life for breast cancer patients. Moreover, regular doses of 20 mg/day seemed to increase partial response and 1-year survival rates. Accordingly, this systematic review leads us to draw attention to the need for more RCTs to provide a comprehensive view of the promising actions of melatonin in breast cancer and, given the safety profile of this molecule, adequate translational doses should be established in further RCTs.

12.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373176

RESUMEN

Nuclear vacuoles are specific structures present on the head of the human sperm of fertile and non-fertile men. Human sperm head vacuoles have been previously studied using motile sperm organelle morphology examination (MSOME) and their origin related to abnormal morphology, abnormal chromatin condensation and DNA fragmentation. However, other studies argued that human sperm vacuoles are physiological structures and consequently, to date, the nature and origin of the nuclear vacuoles remains to be elucidated. Here, we aim to define the incidence, position, morphology and molecular content of the human sperm vacuoles using transmission electron microscopy (TEM) and immunocytochemistry techniques. The results showed that ~50% of the analyzed human sperm cells (n = 1908; 17 normozoospermic human donors) contained vacuoles mainly located (80%) in the tip head region. A significant positive correlation was found between the sperm vacuole and nucleus areas. Furthermore, it was confirmed that nuclear vacuoles were invaginations of the nuclear envelope from the perinuclear theca and containing cytoskeletal proteins and cytoplasmic enzyme, discarding a nuclear or acrosomal origin. According to our findings, these human sperm head vacuoles are cellular structures originating from nuclear invaginations and contain perinuclear theca (PT) components, allowing us to define a new term of 'nuclear invaginations' rather than 'nuclear vacuoles'.


Asunto(s)
Membrana Nuclear , Vacuolas , Humanos , Masculino , Vacuolas/metabolismo , Análisis de Semen/métodos , Motilidad Espermática/fisiología , Semen , Cabeza del Espermatozoide , Espermatozoides/metabolismo
13.
Am J Biol Anthropol ; 181(4): 653-665, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37318064

RESUMEN

OBJECTIVES: Southern Patagonian (SP) hunter-gatherers were adapted to diverse environments and subsistence strategies. However, ecological factors affecting variation in upper-limb proportions have not been thoroughly examined. This study analyses whether size-related humerus morphology differs among hunter-gatherers from SP according to specific subsistence economy and physical environment. MATERIALS AND METHODS: Thirty-nine left humeri of adult individuals were selected from well-documented SP archeological sites. Individuals were grouped into terrestrial or maritime hunter-gatherers based on diet-related archeological and stable isotope records. Five humeral head and diaphyseal metrics were taken and statistically compared among subsistence strategy groups across four ecogeographic subregions. RESULTS: Terrestrial hunter-gatherers exhibit greater humeral dimensions compared to maritime hunter-gatherers. An ecogeographic pattern of humerus size variation was also found, showing significant size reduction in individuals from southern regions. CONCLUSION: The previously determined low genetic variability within hunter-gatherers from SP suggests that the physical environment played an important role in humeral adaptive plasticity. These findings also highlight morphological upper-limb responses to bioclimate factors derived from SP subregions.


Asunto(s)
Dieta , Ambiente , Adulto , Humanos , Diáfisis , Arqueología , Cabeza Humeral
14.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169859

RESUMEN

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Asunto(s)
Arginasa , Microglía , Animales , Femenino , Ratones , Arginasa/genética , Arginasa/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo
15.
Eur J Med Chem ; 251: 115245, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905916

RESUMEN

Protein phosphatase 2A (PP2A) is an important Ser/Thr phosphatase that participates in the regulation of multiple cellular processes. This implies that any deficient activity of PP2A is the responsible of severe pathologies. For instance, one of the main histopathological features of Alzheimer's disease is neurofibrillary tangles, which are mainly comprised by hyperphosphorylated forms of tau protein. This altered rate of tau phosphorylation has been correlated with PP2A depression AD patients. With the goal of preventing PP2A inactivation in neurodegeneration scenarios, we have aimed to design, synthesize and evaluate new ligands of PP2A capable of preventing its inhibition. To achieve this goal, the new PP2A ligands present structural similarities with the central fragment C19-C27 of the well-established PP2A inhibitor okadaic acid (OA). Indeed, this central moiety of OA does not exert inhibitory actions. Hence, these compounds lack PP2A-inhibiting structural motifs but, in contrast, compete with PP2A inhibitors, thus recovering phosphatase activity. Proving this hypothesis, most compounds showed a good neuroprotective profile in neurodegeneration models related to PP2A impairment, highlighting derivative 10, named ITH12711, as the most promising one. This compound (1) restored in vitro and cellular PP2A catalytic activity, measured on a phospho-peptide substrate and by western-blot analyses, (2) proved good brain penetration measured by PAMPA, and (3) prevented LPS-induced memory impairment of mice in the object recognition test. Thus, the promising outcomes of the compound 10 validate our rational approach to design new PP2A-activating drugs based on OA central fragment.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ácido Ocadaico/farmacología , Ácido Ocadaico/metabolismo , Neuroprotección , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Proteínas tau/metabolismo , Proteína Fosfatasa 2/metabolismo , Fosforilación
16.
Antioxidants (Basel) ; 12(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36978942

RESUMEN

Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization-embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.

17.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36829956

RESUMEN

Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.

18.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36772651

RESUMEN

This paper addresses the problem of achieving lifelong open-ended learning autonomy in robotics, and how different cognitive architectures provide functionalities that support it. To this end, we analyze a set of well-known cognitive architectures in the literature considering the different components they address and how they implement them. Among the main functionalities that are taken as relevant for lifelong open-ended learning autonomy are the fact that architectures must contemplate learning, and the availability of contextual memory systems, motivations or attention. Additionally, we try to establish which of them were actually applied to real robot scenarios. It transpires that in their current form, none of them are completely ready to address this challenge, but some of them do provide some indications on the paths to follow in some of the aspects they contemplate. It can be gleaned that for lifelong open-ended learning autonomy, motivational systems that allow finding domain-dependent goals from general internal drives, contextual long-term memory systems that all allow for associative learning and retrieval of knowledge, and robust learning systems would be the main components required. Nevertheless, other components, such as attention mechanisms or representation management systems, would greatly facilitate operation in complex domains.

19.
Neural Regen Res ; 18(3): 503-505, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36018154

RESUMEN

Neurodegeneration affects a large number of cell types including neurons, astrocytes or oligodendrocytes, and neural stem cells. Neural stem cells can generate new neuronal populations through proliferation, migration, and differentiation. This neurogenic potential may be a relevant factor to fight neurodegeneration and aging. In the last years, we can find growing evidence suggesting that melatonin may be a potential modulator of adult hippocampal neurogenesis. The lack of therapeutic strategies targeting neurogenesis led researchers to explore new molecules. Numerous preclinical studies with melatonin observed how melatonin can modulate and enhance molecular and signaling pathways involved in neurogenesis. We made a special focus on the connection between these modulation mechanisms and their implication in neurodegeneration, to summarize the current knowledge and highlight the therapeutic potential of melatonin.

20.
EXCLI J ; 22: 1280-1310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234969

RESUMEN

It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA