Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Cancers (Basel) ; 16(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672643

Background: Precision oncology treatments are being applied more commonly in breast and gynecological oncology through the implementation of Molecular Tumor Boards (MTBs), but real-world clinical outcome data remain limited. Methods: A retrospective analysis was conducted in patients with breast cancer (BC) and gynecological malignancies referred to our center's MTB from 2018 to 2023. The analysis covered patient characteristics, next-generation sequencing (NGS) results, MTB recommendations, therapy received, and clinical outcomes. Results: Sixty-three patients (77.8%) had metastatic disease, and forty-four patients (54.3%) had previously undergone three or more lines of systemic treatment. Personalized treatment recommendations were provided to 50 patients (63.3%), while 29 (36.7%) had no actionable target. Ultimately, 23 patients (29.1%) underwent molecular-matched treatment (MMT). Commonly altered genes in patients with pan-gyn tumors (BC and gynecological malignancies) included TP53 (n = 42/81, 51.9%), PIK3CA (n = 18/81, 22.2%), BRCA1/2 (n = 10/81, 12.3%), and ARID1A (n = 9/81, 11.1%). Patients treated with MMT showed significantly prolonged progression-free survival (median PFS 5.5 vs. 3.5 months, p = 0.0014). Of all patients who underwent molecular profiling, 13.6% experienced a major clinical benefit (PFSr ≥ 1.3 and PR/SD ≥ 6 months) through precision oncology. Conclusions: NGS-guided precision oncology demonstrated improved clinical outcomes in a subgroup of patients with gynecological and breast cancers.

2.
JAMA Netw Open ; 7(4): e247811, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38648056

Importance: RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective: To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants: This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures: Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results: A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance: In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.


Breast Neoplasms , Germ-Line Mutation , Homologous Recombination , Ovarian Neoplasms , Rad51 Recombinase , Adult , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Homologous Recombination/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/epidemiology , Prevalence , Retrospective Studies , Spain/epidemiology , Rad51 Recombinase/genetics
4.
Mod Pathol ; 37(4): 100445, 2024 Apr.
Article En | MEDLINE | ID: mdl-38341130

Homologous recombination deficiency (HRD) assays are an important element of personalized oncology in ovarian carcinomas, but the optimal tissue requirements for these complex molecular assays remain unclear. As a result, a considerable percentage of assays are not successful, leading to suboptimal diagnoses for these patients. In this study, we have systematically analyzed tumor and tissue parameters for HRD analysis in a large cohort of real-world cancer samples. The aim of this study is to give recommendations for pathologists and gynecologic oncologists for selection of tissue samples to maximize the success rate of HRD analyses. Tumor samples from 2702 patients were sent to the Institute of Pathology of the Philipps-University Marburg between October 2020 and September 2022, of which 2654 were analyzed using the Myriad MyChoice HRD+ CDx assay. A total of 2396 of 2654 samples (90.3%) were successfully tested, of which 984 of 2396 (41.1%) were HRD positive and 1412 (58.9%) were HRD negative. Three hundred sixty-three of 2396 samples (15.2%) were BRCA1/2-mutated; 27 samples had a BRCA1/2 mutation and a genomic instability score (GIS) < 42. Twenty-two samples (0.9%) failed GIS measurement but displayed a BRCA1/2 mutation. BRCA1/2-mutated samples showed significantly (P < .0001) higher GIS values than those with a wild-type BRCA1/2 status. Tumor cell content, tumor area, and histology significantly (P < .0001) affected the probability of successfully analyzing a sample. Based on a systematic analysis of tumor cell content and tumor area, we recommend selecting patient high-grade serous ovarian cancer samples that display a tumor cell content ≥30% and a tumor area ≥0.5 cm2 (based on their hematoxylin and eosin) for HRD testing to allow for optimal chances of a successful analysis and conclusive results. Considering histologic and sample conditions, success rates of up to 98% can be achieved. Our comprehensive evaluation contributes to further standardization of recommendations on HRD testing in ovarian cancer, which will have a large impact on personalized therapeutic strategies in this highly aggressive tumor type.


BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , Mutation , Homologous Recombination , BRCA2 Protein/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Genomic Instability
5.
Pathologie (Heidelb) ; 44(1): 39-49, 2023 Feb.
Article De | MEDLINE | ID: mdl-36629894

In breast cancer, the current guideline for pathological workup includes recommendations for advanced molecular analysis of certain predictive molecular markers in addition to basic immunohistochemical diagnostics. These markers are determined depending on tumor stage, including sequencing techniques and immunohistochemical methods. This comprises the systematic investigation of molecular alterations such as PIK3CA or BRCA1,2 mutations, NTRK fusions, or microsatellite instability as a basis for targeted therapy. Further alterations, for example in the PI3K pathway, ESR1 alterations, or ERBB2 mutations, may also be relevant for individual therapy decisions especially in the context of resistant or relapsed disease. Thus, particularly in advanced stages, a more comprehensive molecular characterization of the tumor may reveal genetic alterations that act as tumor drivers and provide targets for personalized therapies. Due to the large number of potential molecular targets, NGS panel diagnostics are a suitable approach in this conjunction with immunohistochemical characterization and the individual clinical situation. Molecular based therapeutical strategies outside of entity-specific approvals should be discussed in an interdisciplinary team within the framework of a molecular tumor board.


Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Mutation , Pathology, Molecular
6.
J Mol Diagn ; 24(12): 1254-1263, 2022 12.
Article En | MEDLINE | ID: mdl-36191839

The diagnostic evaluation of homologous recombination deficiency (HRD) is central to define targeted therapy strategies for patients with ovarian carcinoma. We evaluated HRD in 514 ovarian carcinoma samples by next-generation sequencing of DNA libraries, including BRCA1/BRCA2 and 26,523 single-nucleotide polymorphisms using the standardized Myriad HRD assay, with the predefined cut point of ≥42 for a positive genomic instability score (GIS). All samples were measured in the central Myriad laboratory and in an academic molecular pathology laboratory. A positive GIS was detected in 196 (38.1%) of tumors, whereas 318 (61.9%) were GIS negative. Combining GIS and BRCA mutations, a total of 200 (38.9%) of the 514 tumors were HRD positive. A positive GIS was significantly associated with high-grade serous histology (P < 0.000001), grade 3 tumors (P = 0.001), and patient age <60 years (P = 0.0003). The concordance between both laboratories for the GIS status was 96.9% (P < 0.000001), with a sensitivity of 94.6% and a specificity of 98.4%. Concordance for HRD status was 97.1% (499 of 514 tumors). The percentage of HRD-positive tumors in our real-life cohort was similar to the proportion observed in the recently published PAOLA-1 trial, with high concordance between central and local laboratories. Our results support introduction of the standardized HRD assay in academic molecular pathology laboratories, thus broadening access to personalized oncology strategies for patients with ovarian cancer worldwide.


Biomarkers, Tumor , Ovarian Neoplasms , Humans , Female , Middle Aged , Biomarkers, Tumor/genetics , Homologous Recombination/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Genomic Instability , Genomics
7.
Cancers (Basel) ; 14(18)2022 Sep 12.
Article En | MEDLINE | ID: mdl-36139590

BACKGROUND: Increasing knowledge of cancer biology and an expanding spectrum of molecularly targeted therapies provide the basis for precision oncology. Despite extensive gene diagnostics, previous reports indicate that less than 10% of patients benefit from this concept. METHODS: We retrospectively analyzed all patients referred to our center's Molecular Tumor Board (MTB) from 2018 to 2021. Molecular testing by next-generation sequencing (NGS) included a 67-gene panel for the detection of short-sequence variants and copy-number alterations, a 53- or 137-gene fusion panel and an ultra-low-coverage whole-genome sequencing for the detection of additional copy-number alterations outside the panel's target regions. Immunohistochemistry for microsatellite instability and PD-L1 expression complemented NGS. RESULTS: A total of 109 patients were referred to the MTB. In all, 78 patients received therapeutic proposals (70 based on NGS) and 33 were treated accordingly. Evaluable patients treated with MTB-recommended therapy (n = 30) had significantly longer progression-free survival than patients treated with other therapies (n = 17) (4.3 vs. 1.9 months, p = 0.0094). Seven patients treated with off-label regimens experienced major clinical benefits. CONCLUSION: The combined focused sequencing assays detected targetable alterations in the majority of patients. Patient benefits appeared to lie in the same range as with large-scale sequencing approaches.

...