Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Neurooncol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192067

RESUMEN

PURPOSE: Reprogramming of amino acid metabolism is relevant for initiating and fueling tumor formation and growth. Therefore, there has been growing interest in anticancer therapies targeting amino acid metabolism. While developing personalized therapeutic approaches to glioma, in vivo proton magnetic resonance spectroscopy (MRS) is a valuable tool for non-invasive monitoring of tumor metabolism. Here, we evaluated MRS-detected brain amino acids and myo-inositol as potential diagnostic and prognostic biomarkers in glioma. METHOD: We measured alanine, glycine, glutamate, glutamine, and myo-inositol in 38 patients with MRI-suspected glioma using short and long echo-time single-voxel PRESS MRS sequences. The detectability of alanine, glycine, and myo-inositol and the (glutamate + glutamine)/total creatine ratio were evaluated against the patients' IDH mutation status, CNS WHO grade, and overall survival. RESULTS: While the detection of alanine and non-detection of myo-inositol significantly correlated with IDH wildtype (p = 0.0008, p = 0.007, respectively) and WHO grade 4 (p = 0.01, p = 0.04, respectively), glycine detection was not significantly associated with either. The ratio of (glutamate + glutamine)/total creatine was significantly higher in WHO grade 4 than in 2 and 3. We found that the overall survival was significantly shorter in glioma patients with alanine detection (p = 0.00002). CONCLUSION: Focusing on amino acids in MRS can improve its diagnostic and prognostic value in glioma. Alanine, which is visible at long TE even in the presence of lipids, could be a relevant indicator for overall survival.

3.
Cell Death Discov ; 10(1): 379, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187509

RESUMEN

In glioblastoma (GB) cells oxidative stress is induced by both, conditions of the tumor microenvironment as well as by therapeutic interventions. Upregulation of superoxide dismutase 1 (SOD1), a key enzyme for oxidative defense and downstream target of mammalian target of rapamycin complex 1 (mTORC1) is a candidate mechanism to sustain survival and proliferation of tumor cells. SOD1 was inhibited by shRNA mediated gene suppression, CRISPR/Cas9 knockout and pharmacological inhibition in human (primary) GB cells. SOD1 activity was determined by SOD1/2 activity assay. ROS levels, cell death and the NADPH/NADP-ratio were measured under normal and starvation conditions. To study the mTORC1-SOD1 axis, mTORC1 activated TSC2 knockdown cells (TSC2sh) were analyzed. Genetic and pharmacological inhibition of SOD1 correlated with decreased SOD1 activity, increased ROS and enhanced the sensitivity of glioma cells towards starvation- and hypoxia-induced cell death. This was accompanied by a decreased NADPH/NADP-ratio. Furthermore, combination therapy of SOD1 and mTORC1 inhibition partially rescued the protective effect of mTORC1 inhibitor monotherapy. SOD1 mediates adaptation of GB cells to stress conditions in the tumor microenvironment in a mTORC1-dependent manner. Moreover, SOD1 activation contributes to the cell death resistance conferred by mTORC1 inhibitors under hypoxic conditions.

4.
J Magn Reson Imaging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722043

RESUMEN

BACKGROUND: Emerging evidence suggests that fasting could play a key role in cancer treatment. Its metabolic effects on gliomas require further investigation. PURPOSE: To design a multi-voxel 1H/31P MR-spectroscopic imaging (MRSI) protocol for noninvasive metabolic monitoring of cerebral, fasting-induced changes on an individual patient/tumor level, and to assess its technical reliability/reproducibility. STUDY TYPE: Prospective. POPULATION: MRS phantom. Twenty-two patients (mean age = 61, 6 female) with suspected WHO grade II-IV glioma examined before and after 72-hour-fasting prior to biopsy/resection. FIELD STRENGTH/SEQUENCE: 3-T, 1H decoupled 3D 31P MRSI, 2D 1H sLASER MRSI at an echo time of 144 msec, 2D 1H MRSI (as water reference), T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR. sLASER and PRESS sequences were used for phantom measurements. ASSESSMENT: Phantom measurements and spectral simulations were performed with various echo-times for protocol optimization. In vivo spectral analyses were conducted using LCModel and AMARES, obtaining quality/fitting parameters (linewidth, signal-to-noise-ratio, and uncertainty measures of fitting) and metabolite intensities. The volume of glioma sub-regions was calculated and correlated with MRS findings. Ex-vivo spectra of necrotic tumor tissues were obtained using high-resolution magic-angle spinning (HR-MAS) technique. STATISTICAL TESTS: Wilcoxon signed-rank test, Bland-Altman plots, and coefficient of variation were used for repeatability analysis of quality/fitting parameters and metabolite concentrations. Spearman ρ correlation for the concentration of ketone bodies with volumes of glioma sub-regions was determined. A P-value <0.05 was considered statistically significant. RESULTS: 1H and 31P repeatability measures were highly consistent between the two sessions. ß-hydroxybutyrate and acetoacetate were detectable (fitting-uncertainty <50%) in glioma sub-regions of all patients who completed the 72-hour-fasting cycle. ß-hydroxybutyrate accumulation was significantly correlated with the necrotic/non-enhancing tumor core volume (ρ = 0.81) and validated using ex-vivo 1H HR-MAS. DATA CONCLUSION: We propose a comprehensive MRS protocol that may be used for monitoring cerebral, fasting-induced changes in patients with glioma. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

5.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607071

RESUMEN

Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.


Asunto(s)
Amidas , Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Glioblastoma , Pirimidinas , Sulfonamidas , Animales , Ratones , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Citarabina/farmacología , Citarabina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis
6.
Neurol Res Pract ; 6(1): 19, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570823

RESUMEN

OBJECTIVE: Brain tumors and metastases account for approximately 10% of all status epilepticus (SE) cases. This study described the clinical characteristics, treatment, and short- and long-term outcomes of this population. METHODS: This retrospective, multi-center cohort study analyzed all brain tumor patients treated for SE at the university hospitals of Frankfurt and Marburg between 2011 and 2017. RESULTS: The 208 patients (mean 61.5 ± 14.7 years of age; 51% male) presented with adult-type diffuse gliomas (55.8%), metastatic entities (25.5%), intracranial extradural tumors (14.4%), or other tumors (4.3%). The radiological criteria for tumor progression were evidenced in 128 (61.5%) patients, while 57 (27.4%) were newly diagnosed with tumor at admission and 113 (54.3%) had refractory SE. The mean hospital length of stay (LOS) was 14.8 days (median 12.0, range 1-57), 171 (82.2%) patients required intensive care (mean LOS 8.9 days, median 5, range 1-46), and 44 (21.2%) were administered mechanical ventilation. All patients exhibited significant functional status decline (modified Rankin Scale) post-SE at discharge (p < 0.001). Mortality at discharge was 17.3% (n = 36), with the greatest occurring in patients with metastatic disease (26.4%, p = 0.031) and those that met the radiological criteria for tumor progression (25%, p < 0.001). Long-term mortality at one year (65.9%) was highest in those diagnosed with adult-type diffuse gliomas (68.1%) and metastatic disease (79.2%). Refractory status epilepticus cases showed lower survival rates than non-refractory SE patients (log-rank p = 0.02) and those with signs of tumor progression (log-rank p = 0.001). CONCLUSIONS: SE occurrence contributed to a decline in functional status in all cases, regardless of tumor type, tumor progression status, and SE refractoriness, while long-term mortality was increased in those with malignant tumor entities, tumor progressions, and refractory SE. SE prevention may preserve functional status and improve survival in individuals with brain tumors.

7.
Blood Transfus ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38315541

RESUMEN

BACKGROUND: Red blood cell (RBC) transfusion in patients undergoing major elective cranial surgery is associated with increased postoperative morbidity and mortality. This study aims to identify the clinical outcome of transfused glioblastoma patients undergoing primary surgical tumor resection and identify risk factors for RBC transfusion. MATERIAL AND METHODS: Between 2009 and 2019, 406 patients underwent elective primary glioblastoma resection. For multivariate analysis to assess risk factors for RBC transfusion, logistic regression was conducted. The impact of RBC transfusion on overall survival was assessed using Kaplan-Meier analysis. RESULTS: In total, 36 (8.9%) patients received RBC transfusion. Preoperative anemia rate was significantly higher in transfused patients compared to patients without RBC transfusion (33.3 vs 6.5%; p<0.0001). Postoperative complications as well as hospital length of stay (LOS) (p<0.0001) were significantly increased in transfused patients compared to non-transfused patients. After multivariate analysis, risk factors for RBC transfusion were preoperative anemia (p<0.0001), intraoperative blood loss (p<0.0001), female gender (p=0.0056) and radiation (p=0.0064). Kaplan-Meier curves revealed that RBC transfusion and being elderly (age ≥75 years) were relevant for overall survival. DISCUSSION: RBC transfusion is associated with increased postoperative morbidity and mortality in patients undergoing elective primary glioblastoma resection. Preoperative anemia and intraoperative blood loss are major risk factors for RBC transfusion. Preoperative anemia management and blood conservation strategies are crucial in patients undergoing elective primary glioblastoma resection.

8.
J Neurochem ; 168(6): 1157-1167, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38332527

RESUMEN

For CNS lymphomas (CNSL), there is a high need for minimally invasive and easily obtainable diagnostic markers. Intrathecal IgM synthesis can easily be determined in routine CSF diagnostics. The aim of this study was to systematically investigate the diagnostic potential of intrathecal IgM synthesis in primary and secondary CNSL (PCNSL and SCNSL). In this retrospective study, patients with a biopsy-proven diagnosis of PCNSL or SCNSL were compared with patients with other neurological diseases in whom CNSL was initially the primary radiological differential diagnosis based on MRI. Sensitivity and specificity of intrathecal IgM synthesis were calculated using receiver operating characteristic curves. Seventy patients with CNSL were included (49 PCNSL and 21 SCNSL) and compared to 70 control patients. The sensitivity and specificity for the diagnosis of CNSL were 49% and 87%, respectively, for the entire patient population and 66% and 91% after selection for cases with tumor access to the CSF system and isolated intrathecal IgM synthesis. In cases with MRI-based radiological suspicion of CNSL, intrathecal IgM synthesis has good specificity but limited sensitivity. Because of its low-threshold availability, analysis of intrathecal IgM synthesis has the potential to lead to higher diagnostic accuracy, especially in resource-limited settings, and deserves further study.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Inmunoglobulina M , Linfoma , Humanos , Inmunoglobulina M/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/inmunología , Anciano , Linfoma/líquido cefalorraquídeo , Linfoma/diagnóstico , Adulto , Biomarcadores de Tumor/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Sensibilidad y Especificidad , Adulto Joven
9.
Cell Rep ; 43(3): 113868, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421868

RESUMEN

Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.


Asunto(s)
Glutamina , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Glutamina/metabolismo , Glucólisis , Carbono , Serina/metabolismo
10.
Cell Death Discov ; 10(1): 8, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182566

RESUMEN

Glioblastoma is an incurable brain tumor with a median survival below two years. Trials investigating targeted therapy with inhibitors of the kinase mTOR have produced ambiguous results. Especially combination of mTOR inhibition with standard temozolomide radiochemotherapy has resulted in reduced survival in a phase II clinical trial. To date, this phenomenon is only poorly understood. To recreate the therapeutic setting in vitro, we exposed glioblastoma cell lines to co-treatment with rapamycin and temozolomide and assessed cell viability, DNA damage and reactive oxygen species. Additionally, we employed a novel translatomic based mass spectrometry approach ("mePROD") to analyze acute changes in translated proteins. mTOR inhibition with rapamycin protected glioblastoma cells from temozolomide toxicity. Following co-treatment of temozolomide with rapamycin, an increased translation of reactive oxygen species (ROS)-detoxifying proteins was detected by mass spectrometry. This was accompanied by improved ROS-homeostasis and reduced DNA damage. Additionally, rapamycin induced the expression of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT) in glioblastoma cells with an unmethylated MGMT gene promotor. Inhibition of mTOR antagonized the cytotoxic effects of temozolomide in vitro. The induction of antioxidant defences and MGMT are two underlying candidate mechanisms. Further functional experiments in vitro and in vivo are warranted to characterize this effect that appears relevant for combinatorial therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA