Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895257

RESUMEN

Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-ß (TGF-ß) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. A functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.

2.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38767515

RESUMEN

Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Microtúbulos , Mitocondrias , Neuronas , Animales , Microtúbulos/metabolismo , Microtúbulos/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Cilios/metabolismo , Cilios/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuronas/metabolismo , Mutación/genética
4.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405845

RESUMEN

Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1 mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1 cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PESTΔ) mutant resembled the ccpp-1 mutant with dye filling defects and B-tubule breaks. The nekl-4(PESTΔ) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.

6.
Nat Commun ; 13(1): 6168, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36257965

RESUMEN

Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.


Asunto(s)
Caenorhabditis elegans , Gluconeogénesis , Animales , Caenorhabditis elegans/genética , Gluconeogénesis/genética , Factores de Transcripción/genética , Hipoxia de la Célula , Hipoxia/genética , Oxígeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
7.
Cell Biosci ; 12(1): 76, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641992

RESUMEN

BACKGROUND: Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS: To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS: BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION: These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.

8.
Cell Commun Signal ; 19(1): 97, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563224

RESUMEN

BACKGROUND: Recent studies have shown that bone morphogenetic protein receptor 2 (BMPR2) regulates cell survival signaling events in cancer cells independent of the BMP type 1 receptor (BMPR1) or the Smad-1/5 transcription factor. Mutations in BMPR2 trafficking proteins leads to overactive BMP signaling, which leads to neurological diseases caused by BMPR2 stabilization of the microtubules. It is not known whether BMPR2 regulates the microtubules in cancer cells and what effect this has on cell survival. It is also not known whether alterations in BMPR2 trafficking effects activity and response to BMPR2 inhibitors. METHODS: We utilized BMPR2 siRNA and the BMP receptor inhibitors JL5 and Ym155, which decrease BMPR2 signaling and cause its mislocalization to the cytoplasm. Using the JL5 resistant MDA-MD-468 cell line and sensitive lung cancer cell lines, we examined the effects of BMPR2 inhibition on BMPR2 mislocalization to the cytoplasm, microtubule destabilization, lysosome activation and cell survival. RESULTS: We show that the inhibition of BMPR2 destabilizes the microtubules. Destabilization of the microtubules leads to the activation of the lysosomes. Activated lysosomes further decreases BMPR2 signaling by causing it to mislocalizated to the cytoplasm and/or lysosome for degradation. Inhibition of the lysosomes with chloroquine attenuates BMPR2 trafficking to the lysosome and cell death induced by BMPR2 inhibitors. Furthermore, in MDA-MD-468 cells that are resistant to JL5 induced cell death, BMPR2 was predominately located in the cytoplasm. BMPR2 failed to localize to the cytoplasm and/or lysosome following treatment with JL5 and did not destabilize the microtubules or activate the lysosomes. CONCLUSIONS: These studies reveal that the inhibition of BMPR2 destabilizes the microtubules promoting cell death of cancer cells that involves the activation of the lysosomes. Resistance to small molecules targeting BMPR2 may occur if the BMPR2 is localized predominantly to the cytoplasm and/or fails to localize to the lysosome for degradation. Video Abstract.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/antagonistas & inhibidores , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Humanos , Imidazoles/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Lisosomas/efectos de los fármacos , Lisosomas/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Naftoquinonas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolonas/farmacología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos
9.
Autophagy ; 17(11): 3389-3401, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33416042

RESUMEN

Mitochondrial quality control (MQC) balances organelle adaptation and elimination, and mechanistic crosstalk between the underlying molecular processes affects subsequent stress outcomes. FUNDC1 (FUN14 domain containing 1) is a mammalian mitophagy receptor that responds to hypoxia-reoxygenation (HR) stress. Here, we provide evidence that FNDC-1 is the C. elegans ortholog of FUNDC1, and that its loss protects against injury in a worm model of HR. This protection depends upon ATFS-1, a transcription factor that is central to the mitochondrial unfolded protein response (UPRmt). Global mRNA and metabolite profiling suggest that atfs-1-dependent stress responses and metabolic remodeling occur in response to the loss of fndc-1. These data support a role for FNDC-1 in non-hypoxic MQC, and further suggest that these changes are prophylactic in relation to subsequent HR. Our results highlight functional coordination between mitochondrial adaptation and elimination that organizes stress responses and metabolic rewiring to protect against HR injury.Abbreviations: AL: autolysosome; AP: autophagosome; FUNDC1: FUN14 domain containing 1; HR: hypoxia-reperfusion; IR: ischemia-reperfusion; lof: loss of function; MQC: mitochondrial quality control; PCA: principle component analysis; PPP: pentonse phosphate pathway; proK (proteinase K);UPRmt: mitochondrial unfolded protein response; RNAi: RNA interference.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helminto , Hipoxia/genética , Hipoxia/fisiopatología , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/genética , Mitofagia/genética , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Factores de Transcripción/genética
10.
EMBO Rep ; 22(3): e51063, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33470040

RESUMEN

Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteostasis , Animales , Aminas Biogénicas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurotransmisores
11.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092268

RESUMEN

The epidermal growth factor receptor (EGFR) signaling is important for normal development, such as vulval development in Caenorhabditis elegans, and hyperactivation of the EGFR is often associated with cancer development. Our previous report demonstrated the multivulva (Muv) phenotype, a tumor model in C. elegans (jgIs25 strain) by engineering LET-23/EGFR with a TKI-resistant human EGFR T790-L858 mutant. Because Rab proteins regulate vesicle transport, which is important for receptor signaling, we screened the RNAi in the jgIs25 strain to find the Rabs critical for Muv formation. Herein, we show that rab-8 RNAi and the rab-8 (-/-) mutation effectively reduce Muv formation. We demonstrate that RABN-8, an ortholog of Rabin8, known as a GEF for Rab8, is also required for Muv formation by promoting the secretion of EGL-17/FGF from vulval precursor cells. In addition, FGFR inhibitors decreased Muv formation mediated by mutant EGFR. Our data suggest that Rab8 and Rabin8 mediate Muv formation through FGF secretion in the EGFR-TKI-resistant nematode model. Furthermore, FGFR-TKIs more effectively inhibit the growth of lung cancer cell lines in H1975 (EGFR T790M-L858R; EGFR-TKI-resistant) than H522 (wild-type EGFR) and H1650 (EGFR exon 19 deletion; EGFR-TKI-sensitive) cells, suggesting that FGFR-TKIs could be used to control cancers with EGFR-TKI-resistant mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/metabolismo , Quinasas del Centro Germinal/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión al GTP rab/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Quinasas del Centro Germinal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Unión al GTP rab/genética
12.
Cell Commun Signal ; 17(1): 150, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744505
13.
Development ; 145(18)2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30093552

RESUMEN

Axons must correctly reach their targets for proper nervous system function, although we do not fully understand the underlying mechanism, particularly for the first 'pioneer' axons. In C. elegans, AVG is the first neuron to extend an axon along the ventral midline, and this pioneer axon facilitates the proper extension and guidance of follower axons that comprise the ventral nerve cord. Here, we show that the ubiquitin ligase RPM-1 prevents the overgrowth of the AVG axon by repressing the activity of the DLK-1/p38 MAPK pathway. Unlike in damaged neurons, where this pathway activates CEBP-1, we find that RPM-1 and the DLK-1 pathway instead regulate the response to extracellular Wnt cues in developing AVG axons. The Wnt LIN-44 promotes the posterior growth of the AVG axon. In the absence of RPM-1 activity, AVG becomes responsive to a different Wnt, EGL-20, through a mechanism that appears to be independent of canonical Fz-type receptors. Our results suggest that RPM-1 and the DLK-1 pathway regulate axon guidance and growth by preventing Wnt signaling crosstalk.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Glicoproteínas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Quinasas Quinasa Quinasa PAM/genética , Neuronas/metabolismo , Proteínas Wnt/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Curr Biol ; 27(7): 968-980, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318980

RESUMEN

Cilia are found on most non-dividing cells in the human body and, when faulty, cause a wide range of pathologies called ciliopathies. Ciliary specialization in form and function is observed throughout the animal kingdom, yet mechanisms generating ciliary diversity are poorly understood. The "tubulin code"-a combination of tubulin isotypes and tubulin post-translational modifications-can generate microtubule diversity. Using C. elegans, we show that α-tubulin isotype TBA-6 sculpts 18 A- and B-tubule singlets from nine ciliary A-B doublet microtubules in cephalic male (CEM) neurons. In CEM cilia, tba-6 regulates velocities and cargoes of intraflagellar transport (IFT) kinesin-2 motors kinesin-II and OSM-3/KIF17 without affecting kinesin-3 KLP-6 motility. In addition to their unique ultrastructure and accessory kinesin-3 motor, CEM cilia are specialized to produce extracellular vesicles. tba-6 also influences several aspects of extracellular vesicle biology, including cargo sorting, release, and bioactivity. We conclude that this cell-specific α-tubulin isotype dictates the hallmarks of CEM cilia specialization. These findings provide insight into mechanisms generating ciliary diversity and lay a foundation for further understanding the tubulin code.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/ultraestructura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Tomografía con Microscopio Electrónico , Masculino , Microscopía Electrónica de Transmisión , Microtúbulos/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética
15.
EMBO J ; 35(17): 1885-901, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27261197

RESUMEN

Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.


Asunto(s)
Caenorhabditis elegans/fisiología , Dopaminérgicos/metabolismo , Neuronas Dopaminérgicas/fisiología , Células Epiteliales/metabolismo , Homeostasis , Mecanorreceptores/fisiología , Proteínas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliales/efectos de los fármacos , Pseudomonas aeruginosa/inmunología , Receptores de Dopamina D1/metabolismo , Transducción de Señal , Estrés Fisiológico
16.
PLoS One ; 11(2): e0149314, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26891225

RESUMEN

Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Endosomas/metabolismo , Expresión Génica , Aparato de Golgi/metabolismo , Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Neuronas/metabolismo , Transporte de Proteínas , Receptores AMPA/metabolismo , Alineación de Secuencia , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
17.
Elife ; 52016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731517

RESUMEN

Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Hipoxia de la Célula , Sistema de Señalización de MAP Quinasas , Neuronas/fisiología , Receptores de Glutamato/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales
19.
Neuron ; 80(6): 1339-41, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24360537

RESUMEN

Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. (2013) show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/fisiología , Cinesinas/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales
20.
PLoS Genet ; 9(12): e1004063, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385935

RESUMEN

Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion.


Asunto(s)
Aerobiosis/genética , Proteínas de Caenorhabditis elegans/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Factor 1 Relacionado con NF-E2/genética , Neuronas/fisiología , Aerobiosis/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Dinaminas/metabolismo , Hipoxia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Factor 1 Relacionado con NF-E2/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA