Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Invest Dermatol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182565

RESUMEN

Vitiligo is a common chronic autoimmune disease characterized by white macules and patches of the skin, having a negative impact on patients' life, and without any definitive cure at present. Identification of new compounds to reverse depigmentation is therefore a pressing need for this disease. The pharmacologic compounds phosphodiesterase-4 inhibitors (PDE4i) are small molecules with immunomodulatory properties, used for treatment of inflammatory dermatoses. PDE4i have shown repigmentation effects in vitiligo patients, in some case reports. We characterized the proliferative and melanogenic potential of two known PDE4i, crisaborole and roflumilast, and of a more recently designed compound, PF-07038124. We used two in vitro model systems, the primary human melanocyte culture and a 3D co-cultured skin model (MelanoDermTM), with an exploratory testing platform composed of complementary assays (spectrophotometry, melanin and proliferation assays, immunostaining, Fontana-Masson staining, qRT-PCR, western blot and whole transcriptome RNA-Sequencing). We identified that the treatment with PDE4i was associated with increased melanocyte proliferation and melanization in both in vitro models, and with increase in the melanogenic genes and proteins expression in cultured melanocytes. These effects were found to be enhanced by addition of α-MSH. Our findings support the further evaluation of PDE4i with or without α-MSH agonists in vitiligo trials.

3.
Pigment Cell Melanoma Res ; 37(3): 378-390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343115

RESUMEN

We have discovered that human vitiligo patients treated with narrow-band UVB (NBUVB) demonstrated localized resistance to repigmentation in skin sites characterized by distinct cellular and molecular pathways. Using immunostaining studies, discovery-stage RNA-Seq analysis, and confirmatory in situ hybridization, we analyzed paired biopsies collected from vitiligo lesions that did not repigment after 6 months of NBUVB treatment (non-responding) and compared them with repigmented (responding) lesions from the same patient. Non-responding lesions exhibited acanthotic epidermis, had low number of total, proliferative, and differentiated melanocyte (MC) populations, and increased number of senescent keratinocytes (KCs) and of cytotoxic CD8+ T cells as compared with responding lesions. The abnormal response in the non-responding lesions was driven by a dysregulated cAMP pathway and of upstream activator PDE4B, and of WNT/ß-catenin repigmentation pathway. Vitiligo-responding lesions expressed high levels of WNT10B ligand, a molecule that may prevent epidermal senescence induced by NBUVB, and that in cultured melanoblasts prevented the pro-melanogenic effect of α-MSH. Understanding the pathways that govern lack of NBUVB-induced vitiligo repigmentation has a great promise in guiding the development of new therapeutic strategies for vitiligo.


Asunto(s)
Epidermis , Melanocitos , Pigmentación de la Piel , Vitíligo , Vitíligo/patología , Vitíligo/radioterapia , Vitíligo/metabolismo , Humanos , Epidermis/patología , Epidermis/metabolismo , Epidermis/efectos de la radiación , Pigmentación de la Piel/efectos de la radiación , Melanocitos/patología , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Terapia Ultravioleta/métodos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Rayos Ultravioleta , Femenino , Masculino , Vía de Señalización Wnt , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética
4.
Bio Protoc ; 14(2): e4919, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38268973

RESUMEN

Human skin reconstruction on immune-deficient mice has become indispensable for in vivo studies performed in basic research and translational laboratories. Further advancements in making sustainable, prolonged skin equivalents to study new therapeutic interventions rely on reproducible models utilizing patient-derived cells and natural three-dimensional culture conditions mimicking the structure of living skin. Here, we present a novel step-by-step protocol for grafting human skin cells onto immunocompromised mice that requires low starting cell numbers, which is essential when primary patient cells are limited for modeling skin conditions. The core elements of our method are the sequential transplantation of fibroblasts followed by keratinocytes seeded into a fibrin-based hydrogel in a silicone chamber. We optimized the fibrin gel formulation, timing for gel polymerization in vivo, cell culture conditions, and seeding density to make a robust and efficient grafting protocol. Using this approach, we can successfully engraft as few as 1.0 × 106 fresh and 2.0 × 106 frozen-then-thawed keratinocytes per 1.4 cm2 of the wound area. Additionally, it was concluded that a successful layer-by-layer engraftment of skin cells in vivo could be obtained without labor-intensive and costly methodologies such as bioprinting or engineering complex skin equivalents. Key features • Expands upon the conventional skin chamber assay method (Wang et al., 2000) to generate high-quality skin grafts using a minimal number of cultured skin cells. • The proposed approach allows the use of frozen-then-thawed keratinocytes and fibroblasts in surgical procedures. • This system holds promise for evaluating the functionality of skin cells derived from induced pluripotent stem cells and replicating various skin phenotypes. • The entire process, from thawing skin cells to establishing the graft, requires 54 days. Graphical overview.

5.
Biomolecules ; 12(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35625601

RESUMEN

Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name ("lorica" meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.


Asunto(s)
Proteínas de la Membrana , Factor 2 Relacionado con NF-E2 , Epidermis/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
6.
JID Innov ; 2(1): 100065, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024686

RESUMEN

Cornification involves cytoskeletal cross-linkages in corneocytes (the brick) and the secretion of lipids/adhesion structures to the interstitial space (the mortar). Because the assembly of lipid envelopes precedes corneocyte maturation, loricrin is supposed to be dispensable for the protection against desiccation. Although the phenotypes of Lor knockout (LKO) mice are obscure, the antioxidative response on the KEAP1/NRF2 signaling pathway compensates for the structural defect in utero. In this study, we asked how the compensatory response is evoked after the defects are repaired. To this end, the postnatal phenotypes of LKO mice were analyzed with particular attention to the permeability barrier function primarily maintained by the mortar. Ultrastructural analysis revealed substantially thinner cornified cell envelopes and increased numbers of lamellar granules in LKO mice. Superficial epidermal damages triggered the adaptive repairing responses that evoke the NRF2-dependent upregulation of genes associated with lamellar granule secretion in LKO mice. We also found that corneodesmosomes are less degraded in LKO mice. The observation suggests that loricrin and NRF2 are important effectors of cornification, in which proteins need to be secreted, cross-linked, and degraded in a coordinated manner.

8.
Am J Med Genet A ; 185(11): 3390-3400, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34435747

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Hispánicos o Latinos/genética , Judíos/genética , Chile/epidemiología , Colombia/epidemiología , Epidermólisis Ampollosa Distrófica/epidemiología , Femenino , Genes Recesivos/genética , Humanos , Masculino , México/epidemiología , Fenotipo , Estados Unidos/epidemiología
9.
J Invest Dermatol ; 141(3): 638-647.e13, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32800877

RESUMEN

In repigmentation of human vitiligo, the melanocyte (MC) precursors in the hair follicle bulge proliferate, migrate, and differentiate to repopulate the depigmented epidermis. Here, we present a comprehensive characterization of pathways and signals in the bulge that control the repigmentation process. Using biopsies from patients with vitiligo, we have selectively harvested, by laser capture microdissection, MC and keratinocyte precursors from the hair follicle bulge of untreated vitiligo skin and vitiligo skin treated with narrow-band UVB. The captured material was subjected to whole transcriptome RNA-sequencing. With this strategy, we found that repigmentation in the bulge MC precursors is driven by KCTD10, a signal with unknown roles in the skin, and CTNNB1 (encoding ß-catenin) and RHO guanosine triphosphatase [RHO GTPase, RHO], two signaling pathways previously shown to be involved in pigmentation biology. Knockdown studies in cultured human MCs of RHOJ, the upmost differentially expressed RHO family component, corroborated with our findings in patients with vitiligo, identified RHOJ involvement in UV response and melanization, and confirmed previously identified roles in melanocytic cell migration and apoptosis. A better understanding of mechanisms that govern repigmentation in MC precursors will enable the discovery of molecules that induce robust repigmentation phenotypes in vitiligo.


Asunto(s)
Células Madre Adultas/metabolismo , Melanocitos/metabolismo , Pigmentación de la Piel/efectos de la radiación , Terapia Ultravioleta , Vitíligo/terapia , Adolescente , Adulto , Células Madre Adultas/efectos de la radiación , Anciano , Niño , Femenino , Folículo Piloso/citología , Folículo Piloso/metabolismo , Folículo Piloso/patología , Folículo Piloso/efectos de la radiación , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Masculino , Melanocitos/efectos de la radiación , Persona de Mediana Edad , Canales de Potasio con Entrada de Voltaje/metabolismo , RNA-Seq , Transducción de Señal/efectos de la radiación , Resultado del Tratamiento , Vitíligo/patología , Adulto Joven , beta Catenina/metabolismo , Proteínas de Unión al GTP rho/metabolismo
10.
Antioxidants (Basel) ; 11(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35052551

RESUMEN

A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.

11.
Tissue Barriers ; 9(1): 1851561, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33270506

RESUMEN

Keratinization provides tolerance to desiccation and mechanical durability. Loricrin, which is an epidermal thiol-rich protein, efficiently stabilizes terminally differentiated keratinocytes and maintains redox homeostasis. The discovery of the largely asymptomatic loricrin knockout (LKO) phenotype decades ago was rather unpredicted. Nevertheless, when including redox-driven, NF-E2-related factor 2-mediated backup responses, LKO mice provide opportunities for the observation of altered or "quasi-normal" homeostasis. Specifically, given that the tissue structure, as well as the local metabolism, transmits immunological signals, we sought to dissect the consequence of truncated epidermal differentiation program from immunological perspectives. Through a review of the aggregated evidence, we have attempted to generate an integrated view of the regulation of the peripheral immune system, which possibly occurs within the squamous epithelial tissue with truncated differentiation. This synthesis might not only provide insights into keratinization but also lead to the identification of factors intrinsic to the epidermis that imprint the immune effector function.


Asunto(s)
Células Cultivadas/inmunología , Impresión Molecular/métodos , Piel/fisiopatología , Animales , Humanos , Ratones
12.
Mol Cancer Res ; 19(2): 346-357, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33087417

RESUMEN

Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood-derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg-/- (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non-HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)-related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines. IMPLICATIONS: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.


Asunto(s)
Inmunoterapia/métodos , Melanoma/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Immunol ; 205(4): 907-914, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32690656

RESUMEN

Atopic dermatitis is a chronic form of allergic contact dermatitis that is closely associated with a compromised epidermal barrier. Immunogenicity of a given electrophilic hapten after penetration of this barrier depends directly on biochemical reactions in the thiol-rich layer in the stratum granulosum. In response to electrophilic hapten, NF-erythroid 2-related factor 2 (NRF2) in keratinocytes efficiently induces the production of antioxidants. In this study, we show that the immunogenicity of a given hapten depends directly on the extent to which it induces antioxidant host defenses within the epidermal tissue. We found that allergic contact dermatitis did not develop in NRF2-deficient mice because of compromise of the epidermal innate immune responses that upregulate IL-1α. We also analyzed epidermal NRF2 in association with congenital disorders with features similar to atopic dermatitis in humans. Epidermal samples from patients with Netherton syndrome and peeling skin syndrome exhibited elevated levels of NRF2 and also elevated levels of its downstream target, small proline-rich protein 2. Taken together, these results suggest that the thiol-mediated biochemical responses in the stratum granulosum provide a critical link between defective epidermal barrier function and the development of atopy. Likewise, our results suggested that NRF2 may have a profound impact on the generation of cutaneous immunological memory.


Asunto(s)
Antioxidantes/metabolismo , Dermatitis Atópica/metabolismo , Epidermis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Dermatitis Atópica/inmunología , Dermatitis Exfoliativa/inmunología , Dermatitis Exfoliativa/metabolismo , Epidermis/inmunología , Humanos , Inmunidad Innata/inmunología , Interleucina-1alfa/inmunología , Interleucina-1alfa/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Factor 2 Relacionado con NF-E2/inmunología , Síndrome de Netherton/inmunología , Síndrome de Netherton/metabolismo , Piel/inmunología , Enfermedades Cutáneas Genéticas/inmunología , Enfermedades Cutáneas Genéticas/metabolismo , Regulación hacia Arriba/inmunología
14.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218335

RESUMEN

The terminal differentiation of the epidermis is a complex physiological process. During the past few decades, medical genetics has shown that defects in the stratum corneum (SC) permeability barrier cause a myriad of pathological conditions, ranging from common dry skin to lethal ichthyoses. Contrarily, molecular phylogenetics has revealed that amniotes have acquired a specialized form of cytoprotection cornification that provides mechanical resilience to the SC. This superior biochemical property, along with desiccation tolerance, is attributable to the proper formation of the macromolecular protein-lipid complex termed cornified cell envelopes (CE). Cornification largely depends on the peculiar biochemical and biophysical properties of loricrin, which is a major CE component. Despite its quantitative significance, loricrin knockout (LKO) mice have revealed it to be dispensable for the SC permeability barrier. Nevertheless, LKO mice have brought us valuable lessons. It is also becoming evident that absent loricrin affects skin homeostasis more profoundly in many more aspects than previously expected. Through an extensive review of aggregate evidence, we discuss herein the functional significance of the thiol-rich protein loricrin from a biochemical, genetic, pathological, metabolic, or immunological aspect with some theoretical and speculative perspectives.


Asunto(s)
Proteínas de la Membrana/metabolismo , Animales , Diferenciación Celular , Permeabilidad de la Membrana Celular , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/genética
15.
J Invest Dermatol ; 140(4): 891-900.e10, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31542435

RESUMEN

Recognition of transformed cells by the immune system can sometimes generate a rate-limiting equilibrium phase, wherein tumor outgrowth is prevented without complete neoplasm elimination. Targeting premalignancies during this immune-controlled bottleneck is a promising strategy for rational cancer prevention. Thus far, immune equilibrium has been difficult to model in a traceable way, and most immunoediting systems have been limited to mesenchymal tumor types. Here, we introduce a mouse model for fluorescent tracing of somatic epithelial transformation. We demonstrate that transplantation can be used to prevent a confounding artificial tolerance that affects autochthonous inducible models. Using this system, we observe the expected dichotomy of outcomes: immune-deficient contexts permit rapid tumorigenesis, whereas initiated clones in immunocompetent mice undergo elimination or equilibrium. The equilibrium phase correlates with localization within hair follicles, which have been characterized previously as relatively immune-privileged sites. Given this, we posit that valleys in the immune surveillance landscape of a normal tissue can provide a cell-extrinsic alternative to the canonical cell-intrinsic adaptations believed to establish the equilibrium phase. Our model is a prototype for tracing immunoediting in vivo and could serve as a novel screening platform for therapies targeted against immune-controlled premalignancies.


Asunto(s)
Epidermis/patología , Inmunidad Celular , Microscopía Intravital/métodos , Neoplasias Experimentales , Neoplasias Cutáneas/patología , Animales , Progresión de la Enfermedad , Epidermis/inmunología , Vigilancia Inmunológica/inmunología , Ratones , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo
16.
J Invest Dermatol ; 140(1): 29-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31196751

RESUMEN

Vitiligo and alopecia areata (AA) are common autoimmune conditions characterized by white spots on the skin (vitiligo) and bald spots on the scalp (AA), which significantly impact patients' lives by damaging their appearance and function. Melanocytes are the target of immune destruction in vitiligo and are hypothesized to be the site of immune attack in AA. This inflammatory process can be partially reversed by immunosuppressive drugs. Both conditions demonstrate regenerative components that are just now being identified. In this review, we focus on the regenerative medicine aspects of vitiligo and AA, using experimental data from human, mouse, and in vitro models, summarizing the key pathways involved in repopulation of the epidermis with melanocytes in vitiligo and in regrowth of hair follicles in AA. We also discuss treatments that may activate these pathways. Of the regenerative treatments, JAK inhibitors and bimatoprost stimulate repopulation of depleted cells in both diseases, intralesional injections of autologous concentrated platelet-rich plasma and minoxidil showed some benefit in AA, and phototherapy with narrowband UVB was shown to be effective especially in vitiligo. Finally, we discuss future treatments based on the mobilization of stem cells to regenerate anagen hair follicles in AA and intraepidermal melanocytes in vitiligo.


Asunto(s)
Alopecia Areata/terapia , Bimatoprost/uso terapéutico , Regeneración Tisular Dirigida/métodos , Folículo Piloso/fisiología , Inhibidores de las Cinasas Janus/uso terapéutico , Melanocitos/fisiología , Vitíligo/terapia , Animales , Movimiento Celular , Autorrenovación de las Células , Humanos , Ratones , Fototerapia , Medicina Regenerativa
18.
Nat Commun ; 9(1): 745, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467427

RESUMEN

Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine; however, their potential clinical application is hampered by the low efficiency of somatic cell reprogramming. Here, we show that the synergistic activity of synthetic modified mRNAs encoding reprogramming factors and miRNA-367/302s delivered as mature miRNA mimics greatly enhances the reprogramming of human primary fibroblasts into iPSCs. This synergistic activity is dependent upon an optimal RNA transfection regimen and culturing conditions tailored specifically to human primary fibroblasts. As a result, we can now generate up to 4,019 iPSC colonies from only 500 starting human primary neonatal fibroblasts and reprogram up to 90.7% of individually plated cells, producing multiple sister colonies. This methodology consistently generates clinically relevant, integration-free iPSCs from a variety of human patient's fibroblasts under feeder-free conditions and can be applicable for the clinical translation of iPSCs and studying the biology of reprogramming.


Asunto(s)
Técnicas de Reprogramación Celular , Línea Celular , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas , ARN
19.
J Invest Dermatol ; 138(3): 657-668, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29054607

RESUMEN

Vitiligo repigmentation is a complex process in which the melanocyte-depleted interfollicular epidermis is repopulated by melanocyte precursors from hair follicle bulge that proliferate, migrate, and differentiate into mature melanocytes on their way to the epidermis. The strongest stimulus for vitiligo repigmentation is narrow-band UVB (NBUVB), but how the hair follicle melanocyte precursors are activated by UV light has not been extensively studied. To better understand this process, we developed an application that combined laser capture microdissection and subsequent whole transcriptome RNA sequencing of hair follicle bulge melanocyte precursors and compared their gene signatures to that of regenerated mature epidermal melanocytes from NBUVB-treated vitiligo skin. Using this strategy, we found up-regulation of TNC, GJB6, and THBS1 in the hair follicle bulge melanocytes and of TYR in the epidermal melanocytes of the NBUVB-treated vitiligo skin. We validated these results by quantitative real-time-PCR using NBUVB-treated vitiligo skin and untreated normal skin. We also identified that GLI1, a candidate stem cell-associated gene, is significantly up-regulated in the melanocytes captured from NBUVB-treated vitiligo bulge compared with untreated vitiligo bulge. These signals are potential key players in the activation of bulge melanocyte precursors during vitiligo repigmentation.


Asunto(s)
Folículo Piloso/citología , Transducción de Señal/fisiología , Pigmentación de la Piel , Células Madre/metabolismo , Terapia Ultravioleta , Vitíligo/radioterapia , Proteína con Dedos de Zinc GLI1/genética , beta Catenina/fisiología , Humanos , Captura por Microdisección con Láser , Análisis de Secuencia de ARN , Transcripción Genética
20.
J Natl Cancer Inst ; 109(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634934

RESUMEN

Background: We have an incomplete understanding of the differences between cancer stem cells (CSCs) in human papillomavirus-positive (HPV-positive) and -negative (HPV-negative) head and neck squamous cell cancer (HNSCC). The PI3K pathway has the most frequent activating genetic events in HNSCC (especially HPV-positive driven), but the differential signaling between CSCs and non-CSCs is also unknown. Methods: We addressed these unresolved questions using CSCs identified from 10 HNSCC patient-derived xenografts (PDXs). Sored populations were serially passaged in nude mice to evaluate tumorigenicity and tumor recapitulation. The transcription profile of HNSCC CSCs was characterized by mRNA sequencing, and the susceptibility of CSCs to therapy was investigated using an in vivo model. SOX2 transcriptional activity was used to follow the asymmetric division of PDX-derived CSCs. All statistical tests were two-sided. Results: CSCs were enriched by high aldehyde dehydrogenase (ALDH) activity and CD44 expression and were similar between HPV-positive and HPV-negative cases (percent tumor formation injecting ≤ 1x10(3) cells: ALDH(+)CD44(high) = 65.8%, ALDH(-)CD44(high) = 33.1%, ALDH(+)CD44(high) = 20.0%; and injecting 1x10(5) cells: ALDH(-)CD44(low) = 4.4%). CSCs were resistant to conventional therapy and had PI3K/mTOR pathway overexpression (GSEA pathway enrichment, P < .001), and PI3K inhibition in vivo decreased their tumorigenicity (40.0%-100.0% across cases). PI3K/mTOR directly regulated SOX2 protein levels, and SOX2 in turn activated ALDH1A1 (P < .001 013C and 067C) expression and ALDH activity (ALDH(+) [%] empty-control vs SOX2, 0.4% ± 0.4% vs 14.5% ± 9.8%, P = .03 for 013C and 1.7% ± 1.3% vs 3.6% ± 3.4%, P = .04 for 067C) in 013C and 067 cells. SOX2 enhanced sphere and tumor growth (spheres/well, 013C P < .001 and 067C P = .04) and therapy resistance. SOX2 expression prompted mesenchymal-to-epithelial transition (MET) by inducing CDH1 (013C P = .002, 067C P = .01), followed by asymmetric division and proliferation, which contributed to tumor formation. Conclusions: The molecular link between PI3K activation and CSC properties found in this study provides insights into therapeutic strategies for HNSCC. Constitutive expression of SOX2 in HNSCC cells generates a CSC-like population that enables CSC studies.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasa/genética , ARN Mensajero/análisis , Factores de Transcripción SOXB1/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Antígenos CD , Antineoplásicos/farmacología , Cadherinas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virología , División Celular , Proliferación Celular , Transformación Celular Neoplásica/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/virología , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Papillomaviridae/aislamiento & purificación , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Retinal-Deshidrogenasa , Factores de Transcripción SOXB1/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Esferoides Celulares , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA