Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(3): 102431, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37432852

RESUMEN

Bile ducts are essential for bile transport and consist of complex branching tubular networks. Human patient-derived cholangiocyte develops a cystic rather than branching duct morphology. Here, we present a protocol to establish branching morphogenesis in cholangiocyte and cholangiocarcinoma organoids. We describe steps for the initiation, maintenance, and expansion of intrahepatic cholangiocyte organoids branching morphology. This protocol enables the study of organ-specific and mesenchymal-independent branching morphogenesis and provides an improved model to study biliary function and diseases. For complete details on the use and execution of this protocol, please refer to Roos et al. (2022).1.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patología , Organoides/patología , Morfogénesis , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología
2.
Cell Stem Cell ; 29(5): 776-794.e13, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35523140

RESUMEN

Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.


Asunto(s)
Colangiocarcinoma , Organoides , Conductos Biliares , Células Epiteliales , Humanos , Transcriptoma
3.
Cell Mol Gastroenterol Hepatol ; 13(2): 541-564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34700031

RESUMEN

BACKGROUND & AIMS: Liver and bile duct diseases often are associated with extensive cell death of cholangiocytes. Necroptosis represents a common mode of programmed cell death in cholangiopathy, however, detailed mechanistic knowledge is limited owing to the lack of appropriate in vitro models. To address this void, we investigated whether human intrahepatic cholangiocyte organoids (ICOs) can recapitulate cholangiopathy-associated necroptosis and whether this model can be used for drug screening. METHODS: We evaluated the clinical relevance of necroptosis in end-stage liver diseases and liver transplantation by immunohistochemistry. Cholangiopathy-associated programmed cell death was evoked in ICOs derived from healthy donors or patients with primary sclerosing cholangitis or alcoholic liver diseases by the various stimuli. RESULTS: The expression of key necroptosis mediators, receptor-interacting protein 3 and phosphorylated mixed lineage kinase domain-like, in cholangiocytes during end-stage liver diseases was confirmed. The phosphorylated mixed lineage kinase domain-like expression was etiology-dependent. Gene expression analysis confirmed that primary cholangiocytes are more prone to necroptosis compared with primary hepatocytes. Both apoptosis and necroptosis could be specifically evoked using tumor necrosis factor α and second mitochondrial-derived activator of caspases mimetic, with or without caspase inhibition in healthy and patient-derived ICOs. Necroptosis also was induced by ethanol metabolites or human bile in ICOs from donors and patients. The organoid cultures further uncovered interdonor variable and species-specific drug responses. Dabrafenib was identified as a potent necroptosis inhibitor and showed a protective effect against ethanol metabolite toxicity. CONCLUSIONS: Human ICOs recapitulate cholangiopathy-associated necroptosis and represent a useful in vitro platform for the study of biliary cytotoxicity and preclinical drug evaluation.


Asunto(s)
Necroptosis , Organoides , Apoptosis , Células Epiteliales , Humanos , Hígado , Organoides/metabolismo
4.
J Cyst Fibros ; 21(3): 537-543, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34922851

RESUMEN

BACKGROUND: In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS: Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS: ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS: ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Aminofenoles/farmacología , Benzodioxoles , Bicarbonatos , Agonistas de los Canales de Cloruro/farmacología , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Células Epiteliales , Humanos , Indoles , Organoides , Pirazoles , Piridinas , Pirrolidinas , Quinolonas
5.
Clin Transl Med ; 11(12): e566, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34954911

RESUMEN

The well-established 3D organoid culture method enabled efficient expansion of cholangiocyte-like cells from intrahepatic (IHBD) and extrahepatic bile duct (EHBD) tissue biopsies. The extensive expansion capacity of these organoids enables various applications, from cholangiocyte disease modelling to bile duct tissue engineering. Recent research demonstrated the feasibility of culturing cholangiocyte organoids from bile, which was minimal-invasive collected via endoscopic retrograde pancreaticography (ERCP). However, a detailed analysis of these bile cholangiocyte organoids (BCOs) and the cellular region of origin was not yet demonstrated. In this study, we characterize BCOs and mirror them to the already established organoids initiated from IHBD- and EHBD-tissue. We demonstrate successful organoid-initiation from extrahepatic bile collected from gallbladder after resection and by ERCP or percutaneous transhepatic cholangiopathy from a variety of patients. BCOs initiated from these three sources of bile all show features similar to in vivo cholangiocytes. The regional-specific characteristics of the BCOs are reflected by the exclusive expression of regional common bile duct genes (HOXB2 and HOXB3) by ERCP-derived BCOs and gallbladder-derived BCOs expressing gallbladder-specific genes. Moreover, BCOs have limited hepatocyte-fate differentiation potential compared to intrahepatic cholangiocyte organoids. These results indicate that organoid-initiating cells in bile are likely of local (extrahepatic) origin and are not of intrahepatic origin. Regarding the functionality of organoid initiating cells in bile, we demonstrate that BCOs efficiently repopulate decellularized EHBD scaffolds and restore the monolayer of cholangiocyte-like cells in vitro. Bile samples obtained through minimally invasive procedures provide a safe and effective alternative source of cholangiocyte organoids. The shedding of (organoid-initiating) cholangiocytes in bile provides a convenient source of organoids for regenerative medicine.


Asunto(s)
Ácidos y Sales Biliares/genética , Conductos Biliares/química , Organoides/química , Fenotipo , Adolescente , Adulto , Anciano , Conductos Biliares/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Organoides/metabolismo
6.
Cell Stem Cell ; 28(5): 816-832, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961769

RESUMEN

Hepatic, pancreatic, and biliary (HPB) organoids are powerful tools for studying development, disease, and regeneration. As organoid research expands, the need for clear definitions and nomenclature describing these systems also grows. To facilitate scientific communication and consistent interpretation, we revisit the concept of an organoid and introduce an intuitive classification system and nomenclature for describing these 3D structures through the consensus of experts in the field. To promote the standardization and validation of HPB organoids, we propose guidelines for establishing, characterizing, and benchmarking future systems. Finally, we address some of the major challenges to the clinical application of organoids.


Asunto(s)
Hígado , Organoides , Consenso , Páncreas
8.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G741-G752, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33655768

RESUMEN

Cholangiocytes express cystic fibrosis transmembrane conductance regulator (CFTR), which is involved in bicarbonate secretion for the protection against bile toxicity. During liver transplantation, prolonged hypoxia of the graft is associated with cholangiocyte loss and biliary complications. Hypoxia is known to diminish CFTR activity in the intestine, but whether it affects CFTR activity in cholangiocytes remains unknown. Thus, the aim of this study is to investigate the effect of hypoxia on CFTR activity in intrahepatic cholangiocyte organoids (ICOs) and test drug interventions to restore bicarbonate secretion. Fifteen different human ICOs were cultured as monolayers and ion channel [CFTR and anoctamin-1 (ANO1)] activity was determined using an Ussing chamber assay with or without AMP kinase (AMPK) inhibitor under hypoxic and oxygenated conditions. Bile toxicity was tested by apical exposure of cells to fresh human bile. Overall gene expression analysis showed a high similarity between ICOs and primary cholangiocytes. Under oxygenated conditions, both CFTR and ANO1 channels were responsible for forskolin and uridine-5'-triphosphate (UTP) UTP-activated anion secretion. Forskolin stimulation in the absence of intracellular chloride showed ion transport, indicating that bicarbonate could be secreted by CFTR. During hypoxia, CFTR activity significantly decreased (P = 0.01). Switching from oxygen to hypoxia during CFTR measurements reduced CFTR activity (P = 0.03). Consequently, cell death increased when ICO monolayers were exposed to bile during hypoxia compared with oxygen (P = 0.04). Importantly, addition of AMPK inhibitor restored CFTR-mediated anion secretion during hypoxia. ICOs provide an excellent model to study cholangiocyte anion channels and drug-related interventions. Here, we demonstrate that hypoxia affects cholangiocyte ion secretion, leaving cholangiocytes vulnerable to bile toxicity. The mechanistic insights from this model maybe relevant for hypoxia-related biliary injury during liver transplantation.NEW & NOTEWORTHY The previously described liver-derived organoids resemble primary cholangiocytes and should be properly named intrahepatic cholangiocyte organoids (ICOs). ICOs have functional cholangiocyte ion channels (CFTR and ANO1). CFTR might be able to secrete bicarbonate directly into the bile duct lumen. Hypoxia inhibits CFTR and ANO1 functionality in ICOs, which can partially be restored by addition of an AMP kinase inhibitor. Hypoxia impairs cholangiocyte resistance against cytotoxic effects of bile, resulting in increased cell death.


Asunto(s)
Bicarbonatos/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Organoides/metabolismo , Adolescente , Anoctamina-1/metabolismo , Supervivencia Celular/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Hígado/efectos de los fármacos , Metformina/farmacología , Organoides/efectos de los fármacos
9.
Biotechnol Bioeng ; 118(2): 836-851, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33118611

RESUMEN

Biliary disorders can lead to life-threatening disease and are also a challenging complication of liver transplantation. As there are limited treatment options, tissue engineered bile ducts could be employed to replace or repair damaged bile ducts. We explored how these constructs can be created by seeding hepatobiliary LGR5+ organoids onto tissue-specific scaffold. For this, we decellularized discarded human extrahepatic bile ducts (EBD) that we recellularized with organoids of different origin, that is, liver biopsies, extrahepatic bile duct biopsies, and bile samples. Here, we demonstrate efficient decellularization of EBD tissue. Recellularization of the EBD extracellular matrix (ECM) with the organoids of extrahepatic origin (EBD tissue and bile derived organoids) showed more profound repopulation of the ductal ECM when compared with liver tissue (intrahepatic bile duct) derived organoids. The bile duct constructs that were repopulated with extrahepatic organoids expressed mature cholangiocyte-markers and had increased electrical resistance, indicating restoration of the barrier function. Therefore, the organoids of extrahepatic sources are identified to be the optimal candidate for the development of personalized tissue engineered EBD constructs.


Asunto(s)
Conductos Biliares Extrahepáticos/química , Células Epiteliales/metabolismo , Matriz Extracelular/química , Organoides/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Células Epiteliales/citología , Humanos , Organoides/citología
10.
Sci Rep ; 10(1): 21900, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318612

RESUMEN

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Diferenciación Celular , Fibrosis Quística/metabolismo , Organoides/metabolismo , Adolescente , Enfermedades de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Fibrosis Quística/patología , Humanos , Masculino , Organoides/patología
11.
Front Cell Dev Biol ; 8: 630492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634107

RESUMEN

Diseases of the bile duct (cholangiopathies) remain a common indication for liver transplantation, while little progress has been made over the last decade in understanding the underlying pathophysiology. This is largely due to lack of proper in vitro model systems to study cholangiopathies. Recently, a culture method has been developed that allows for expansion of human bile duct epithelial cells grown as extrahepatic cholangiocyte organoids (ncECOs) in non-canonical Wnt-stimulating conditions. These ncECOs closely resemble cholangiocytes in culture and have shown to efficiently repopulate collagen scaffolds that could act as functional biliary tissue in mice. Thus far, initiation of ncECOs required tissue samples, thereby limiting broad patient-specific applications. Here, we report that bile fluid, which can be less invasively obtained and with low risk for the patients, is an alternative source for culturing ncECOs. Further characterization showed that bile-derived cholangiocyte organoids (ncBCOs) are highly similar to ncECOs obtained from bile duct tissue biopsies. Compared to the previously reported bile-cholangiocyte organoids cultured in canonical Wnt-stimulation conditions, ncBCOs have superior function of cholangiocyte ion channels and are able to respond to secretin and somatostatin. In conclusion, bile is a new, less invasive, source for patient-derived cholangiocyte organoids and makes their regenerative medicine applications more safe and feasible.

13.
Best Pract Res Clin Gastroenterol ; 31(2): 227-235, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28624111

RESUMEN

Biliary complications are considered to be the Achilles' heel of liver transplantation. The most common complications are leaks and bile duct strictures. Strictures can arise at the level of the anastomosis (anastomotic strictures; AS) or at other locations in the biliary tree (non-anastomotic strictures; NAS). Endoscopic treatment via endoscopic retrograde cholangiopancreatography (ERCP) is considered to be the preferred therapy for these complications. This review will focus on the diagnostic modalities, new insights in etiology of biliary complications and outcomes after different endoscopic therapies, in both deceased donor transplantation and living-donor liver transplantations. Advances in recent therapies, such as the use of self-expendable metal stents (SEMS) and endoscopic therapy for patients with a bilio-digestive anastomosis will be discussed.


Asunto(s)
Sistema Biliar/anomalías , Colangiopancreatografia Retrógrada Endoscópica/métodos , Trasplante de Hígado/efectos adversos , Complicaciones Posoperatorias/etiología , Sistema Biliar/patología , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...