Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 16(2): e1008576, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32053607

RESUMEN

Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.


Asunto(s)
Brotes de Enfermedades/prevención & control , Genoma de Protozoos/genética , Técnicas de Genotipaje/métodos , Malaria Vivax/transmisión , Plasmodium vivax/genética , África Oriental , Asia , Conjuntos de Datos como Asunto , Erradicación de la Enfermedad/métodos , Marcadores Genéticos/genética , Genotipo , Geografía , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Metadatos , Repeticiones de Microsatélite/genética , Plasmodium vivax/aislamiento & purificación , Polimorfismo de Nucleótido Simple/genética , Valor Predictivo de las Pruebas , América del Sur , Enfermedad Relacionada con los Viajes , Reino Unido , Secuenciación Completa del Genoma
2.
PLoS Negl Trop Dis ; 9(11): e0004196, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26539821

RESUMEN

BACKGROUND: Chloroquine combined with primaquine has been the recommended antimalarial treatment of Plasmodium vivax malaria infections for six decades but the efficacy of this treatment regimen is threatened by chloroquine resistance (CQR). Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene, Pvmdr1 are putative determinants of CQR but the extent of their emergence at population level remains to be explored. OBJECTIVE: In this study we describe the prevalence of SNPs in the Pvmdr1 among samples collected in seven P. vivax endemic countries and we looked for molecular evidence of drug selection by characterising polymorphism at microsatellite (MS) loci flanking the Pvmdr1 gene. METHODS: We examined the prevalence of SNPs in the Pvmdr1 gene among 267 samples collected from Pakistan, Afghanistan, Sri Lanka, Nepal, Sudan, São Tomé and Ecuador. We measured and diversity in four microsatellite (MS) markers flanking the Pvmdr1 gene to look evidence of selection on mutant alleles. RESULTS: SNP polymorphism in the Pvmdr1 gene was largely confined to codons T958M, Y976F and F1076L. Only 2.4% of samples were wildtype at all three codons (TYF, n = 5), 13.3% (n = 28) of the samples were single mutant MYF, 63.0% of samples (n = 133) were double mutant MYL, and 21.3% (n = 45) were triple mutant MFL. Clear geographic differences in the prevalence of these Pvmdr mutation combinations were observed. Significant linkage disequilibrium (LD) between Pvmdr1 and MS alleles was found in populations sampled in Ecuador, Nepal and Sri Lanka, while significant LD between Pvmdr1 and the combined 4 MS locus haplotype was only seen in Ecuador and Sri Lanka. When combining the 5 loci, high level diversity, measured as expected heterozygosity (He), was seen in the complete sample set (He = 0.99), while He estimates for individual loci ranged from 0.00-0.93. Although Pvmdr1 haplotypes were not consistently associated with specific flanking MS alleles, there was significant differentiation between geographic sites which could indicate directional selection through local drug pressure. CONCLUSIONS: Our observations suggest that Pvmdr1 mutations emerged independently on multiple occasions even within the same population. In Sri Lanka population analysis at multiple sites showed evidence of local selection and geographical dispersal of Pvmdr1 mutations between sites.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Asia , Ecuador , Genotipo , Humanos , Repeticiones de Microsatélite , Filogeografía , Polimorfismo de Nucleótido Simple , Selección Genética , Sudán
3.
Malar J ; 13: 392, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25277367

RESUMEN

BACKGROUND: Even though Plasmodium vivax has the widest worldwide distribution of the human malaria species and imposes a serious impact on global public health, the investigation of genetic diversity in this species has been limited in comparison to Plasmodium falciparum. Markers of genetic diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. METHODS: The genetic diversity of eight P. vivax populations (n=543) was investigated by using two microsatellites (MS), m1501 and m3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. RESULTS: In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax populations, with the highest divergence found between Asian and South American populations, yet the majority of the diversity (~89%) was found to exist within rather than between populations. CONCLUSIONS: The MS markers used were informative in both global and local P. vivax population comparisons and their seven and eight bp repeat length facilitated population comparison using data from independent studies. A complex spatial pattern of MS polymorphisms among global P. vivax populations was observed which has potential utility in future epidemiological studies of the P. vivax parasite.


Asunto(s)
Malaria Vivax/parasitología , Repeticiones de Microsatélite , Plasmodium vivax/genética , Asia , Variación Genética , Humanos , América del Sur , Sudán
4.
Antimicrob Agents Chemother ; 54(8): 3121-5, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20498318

RESUMEN

The therapeutic efficacy of sulfadoxine-pyrimethamine (SP) in treating uncomplicated Plasmodium falciparum malaria is unevenly distributed in Colombia. The Andes mountain range separates regions in the west where malaria is endemic from those in the east and constitutes a barrier against gene flow and the dispersal of parasite populations. The distribution of dhfr and dhps genotypes of 146 P. falciparum samples from the eastern Amazon and Orinoco basins and Northwest and Southwest Pacific regions of Colombia was consistent with the documented levels of therapeutic efficacy of SP. The diversity of four dhfr- and dhps-linked microsatellites indicated that double- and triple-mutant alleles for both resistance loci have a single origin. Likewise, multilocus association genotypes, including two unlinked microsatellite loci, suggested that genetic exchanges between the eastern Orinoco and Northwest Pacific populations has taken place across the Andes, most probably via migration of infected people.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Emigración e Inmigración , Malaria Falciparum/transmisión , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/farmacología , Sulfadoxina/farmacología , Alelos , Animales , Antimaláricos/uso terapéutico , Colombia/epidemiología , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Frecuencia de los Genes , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Pirimetamina/uso terapéutico , Análisis de Secuencia de ADN , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA