Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
2.
Adv Sci (Weinh) ; : e2401252, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38605686

Aqueous zinc-ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large-scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium-based electrode materials has been hindered by challenging problems such as poor cyclability and low-rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free-standing VS2/Ti3C2Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g-1 at 0.2 A g-1. Furthermore, the flexible Zn-metal free in-plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long-term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium-based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage.

3.
Nat Commun ; 15(1): 3030, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589464

On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials.

4.
Nanoscale ; 16(15): 7612-7625, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38512302

On-surface synthesis often proceeds under kinetic control due to the irreversibility of key reaction steps, rendering kinetic studies pivotal. The accurate quantification of reaction rates also bears potential for unveiling reaction mechanisms. Temperature-Programmed X-ray Photoelectron Spectroscopy (TP-XPS) has emerged as an analytical tool for kinetic studies with splendid chemical and sufficient temporal resolution. Here, we demonstrate that the common linear temperature ramps lead to fitting ambiguities. Moreover, pinpointing the reaction order remains intricate, although this key parameter entails information on atomistic mechanisms. Yet, TP-XPS experiments with a stepped temperature profile comprised of isothermal segments facilitate the direct quantification of rate constants from fitting time courses. Thereby, rate constants are obtained for a series of temperatures, which allows independent extraction of both activation energies and pre-exponentials from Arrhenius plots. By using two analogous doubly versus triply brominated aromatic model compounds, we found that their debromination on Ag(111) is best modeled by second-order kinetics and thus proceeds via the involvement of a second, non-obvious reactant. Accordingly, we propose that debromination is activated by surface supplied Ag adatoms. This hypothesis is supported by Density Functional Theory (DFT) calculations. We foresee auspicious prospects for this TP-XPS variant for further exploring the kinetics and mechanisms of on-surface reactions.

5.
Science ; 383(6688): 1210-1215, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38484064

MXenes are a family of two-dimensional (2D) materials typically formed by etching the A element from a parent MAX phase. Computational screening for other 3D precursors suitable for such exfoliation is challenging because of the intricate chemical processes involved. We present a theoretical approach for predicting 2D materials formed through chemical exfoliation under acidic conditions by identifying 3D materials amenable for selective etching. From a dataset of 66,643 3D materials, we identified 119 potentially exfoliable candidates, within several materials families. To corroborate the method, we chose a material distinctly different from MAX phases, in terms of structure and chemical composition, for experimental verification. We selectively etched Y from YRu2Si2, resulting in 2D Ru2SixOy. The high-throughput methodology suggests a vast chemical space of 2D materials from chemical exfoliation.

7.
Front Optoelectron ; 16(1): 37, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37975944

Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.

8.
Chem Rev ; 123(23): 13291-13322, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-37976459

More than a decade after the discovery of MXene, there has been a remarkable increase in research on synthesis, characterization, and applications of this growing family of two-dimensional (2D) carbides and nitrides. Today, these materials include one, two, or more transition metals arranged in chemically ordered or disordered structures of three, five, seven, or nine atomic layers, with a surface chemistry characterized by surface terminations. By combining M, X, and various surface terminations, it appears that a virtually endless number of MXenes is possible. However, for the design and discovery of structures and compositions beyond current MXenes, one needs suitable (stable) precursors, an assessment of viable pathways for 3D to 2D conversion, and utilization or development of corresponding synthesis techniques. Here, we present a critical and forward-looking review of the field of atomic scale design and synthesis of MXenes and their parent materials. We discuss theoretical methods for predicting MXene precursors and for assessing whether they are chemically exfoliable. We also summarize current experimental methods for realizing the predicted materials, listing all verified MXenes to date, and outline research directions that will improve the fundamental understanding of MXene processing, enabling atomic scale design of future 2D materials, for emerging technologies.

9.
Nat Commun ; 14(1): 7280, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37949914

The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m-2 h-1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.

10.
ACS Nano ; 17(17): 17158-17168, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37650585

MXenes are two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides typically synthesized from layered MAX-phase precursors. With over 50 experimentally reported MXenes and a near-infinite number of possible chemistries, MXenes make up the fastest-growing family of 2D materials. They offer a wide range of properties, which can be altered by their chemistry (M, X) and the number of metal layers in the structure, ranging from two in M2XTx to five in M5X4Tx. Only one M5X4 MXene, Mo4VC4, has been reported. Herein, we report the synthesis and characterization of two M5AX4 mixed transition metal MAX phases, Ti2.5Ta2.5AlC4 and Ti2.675Nb2.325AlC4, and their successful topochemical transformation into Ti2.5Ta2.5C4Tx and Ti2.675Nb2.325C4Tx MXenes. The resulting MXenes were delaminated into single-layer flakes, analyzed structurally, and characterized for their thermal and optical properties. This establishes a family of M5AX4 MAX phases and their corresponding MXenes. These materials were experimentally produced based on guidance from theoretical predictions, leading to more exciting applications for MXenes.

11.
Nanoscale Adv ; 5(15): 3976-3984, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37496615

Functional 2D materials are interesting for a wide range of applications. The rapid growth of the MXene family is due to its compositional diversity, which, in turn, allows significant tuning of the properties, and hence their applicability. The properties are to a large extent dictated by surface terminations. In the present work, we demonstrate the influence of termination species (O, NH, N, S, F, Cl, Br, I) on the changes in electronic structure, work function, dynamical stability, and atomic charges and distances of MXenes (Ti2C, Nb2C, V2C, Mo2C, Ti3C2, and Nb4C3). Among these systems, the work function values were not previously reported for ∼60% of the systems, and most of the previously reported MXenes with semiconducting nature are here proven to be dynamically unstable. The results show that the work function generally decreases with a reduced electronegativity of the terminating species, which in turn is correlated to a reduced charge of both the metal and terminating species and an increased metal-termination distance. An exception to this trend is NH terminations, which display a significantly reduced work function due to an intrinsic dipole moment within the termination. Furthermore, the results suggest that halogen terminations improve the electrical conductivity of the materials.

12.
Nat Commun ; 14(1): 1255, 2023 Mar 06.
Article En | MEDLINE | ID: mdl-36878914

Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated π-system compounds.

13.
Inorg Chem ; 62(14): 5341-5347, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-36988625

We report the synthesis of three out-of-plane chemically ordered quaternary transition metal borides (o-MAB phases) of the chemical formula M4CrSiB2 (M = Mo, W, Nb). The addition of these phases to the recently discovered o-MAB phase Ti4MoSiB2 shows that this is indeed a new family of chemically ordered atomic laminates. Furthermore, our results expand the attainable chemistry of the traditional M5SiB2 MAB phases to also include Cr. The crystal structure and chemical ordering of the produced materials were investigated using high-resolution scanning transmission electron microscopy and X-ray diffraction by applying Rietveld refinement. Additionally, calculations based on density functional theory were performed to investigate the Cr preference for occupying the minority 4c Wyckoff site, thereby inducing chemical order.

14.
RSC Adv ; 13(5): 3095-3101, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36756423

Heterojunction photocatalysts have recently emerged for use in degradation of organic pollutants, typically being suspended in effluent solution to degrade it. Post degradation, the catalyst must be removed from the treated solution, which consumes both energy and time. Moreover, the separation of nano catalysts from the treated solution is challenging. In the present work, we explore fabrication of immobilized TiO2-PEDOT:PSS hybrid heterojunction catalysts with the support of a PVA (polyvinyl alcohol) matrix. These photocatalytic films do not require any steps to separate the powdered catalyst from the treated water. While the PVA-based films are unstable in water, their stability could be significantly enhanced by heat treatment, enabling efficient removal of organic effluents like methylene blue (MB) and bisphenol-A (BPA) from the aqueous solution under simulated sunlight irradiation. Over 20 cycles, the heterojunction photocatalyst maintained high photocatalytic activity and showed excellent stability. Hence, an immobilization of the TiO2-PEDOT:PSS hybrid heterojunction is suggested to be beneficial from the viewpoint of reproducible and recyclable materials for simple and efficient wastewater treatment.

15.
J Pediatr Pharmacol Ther ; 28(1): 55-62, 2023.
Article En | MEDLINE | ID: mdl-36777976

OBJECTIVE: Sepsis causes morbidity and mortality in pediatric patients, but timely antibiotic administration can improve sepsis outcomes. The pharmacy department can affect the time from order to delivery of antibiotics. By evaluating the pharmacy process, this study aimed to decrease the time from antibiotic order to delivery to within 45 minutes. METHODS: All antibiotic orders placed following a positive sepsis screen for acute care patients at a freestanding children's hospital from April 1, 2019, to December 31, 2019, were reviewed. Lean Six Sigma methodology including process mapping was used to identify and implement improvements, including educational interventions for providers. Outcome measures included time from antibiotic order placement to delivery and to administration. Additional assessment of process measures included evaluation of order priority, PowerPlan (an internally created order set) use, and delivery method. RESULTS: Ninety-eight antibiotic orders for 85 patients were evaluated. In an individual chart of antibiotic delivery time, a trend towards faster delivery time was observed after interventions. Stat orders (40.5 minutes [IQR, 19.5-48]) were delivered more quickly than routine orders (51 minutes [IQR, 45-65]; p < 0.001). Orders using the PowerPlan (20.5 minutes [IQR, 18.5-38]) were delivered more quickly than those that did not (47 minutes [IQR, 34-64]; p < 0.01). Shorter time to administration was observed with pneumatic tube delivery (41 minutes [IQR, 20-50]) than with direct delivery to a health care provider (51 minutes [IQR, 31-83]; p < 0.05) or to the automated dispensing cabinet's refrigerator (47 minutes [IQR, 41-62]; p < 0.0001). CONCLUSIONS: Multifactorial coordinated interventions within the pharmacy department improve medication delivery time for pediatric sepsis antibiotic orders.

16.
J Am Chem Soc ; 145(8): 4545-4552, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36794794

On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.

17.
Nanoscale Horiz ; 8(3): 368-376, 2023 Feb 27.
Article En | MEDLINE | ID: mdl-36629866

We have computationally studied the formation mechanism of the biphenylene network via the intermolecular HF zipping, as well as identified key intermediates experimentally, on the Au(111) surface. We elucidate that the zipping process consists of a series of defluorinations, dehydrogenations, and C-C coupling reactions. The Au substrate not only serves as the active site for defluorination and dehydrogenation, but also forms C-Au bonds that stabilize the defluorinated and dehydrogenated phenylene radicals, leading to "standing" benzyne groups. Despite that the C-C coupling between the "standing" benzyne groups is identified as the rate-limiting step, the limiting barrier can be reduced by the adjacent chemisorbed benzyne groups. The theoretically proposed mechanism is further supported by scanning tunneling microscopy experiments, in which the key intermediate state containing chemisorbed benzyne groups can be observed. This study provides a comprehensive understanding towards the on-surface intermolecular HF zipping, anticipated to be instructive for its future applications.

18.
Nat Commun ; 14(1): 3, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36596770

MXenes hold immense potential given their superior electrical properties. The practical adoption of these promising materials is, however, severely constrained by their oxidative susceptibility, leading to significant performance deterioration and lifespan limitations. Attempts to preserve MXenes have been limited, and it has not been possible thus far to reverse the material's performance. In this work, we show that subjecting oxidized micron or nanometer thickness dry MXene films-even those constructed from nanometer-order solution-dispersed oxidized flakes-to just one minute of 10 MHz nanoscale electromechanical vibration leads to considerable removal of its surface oxide layer, whilst preserving its structure and characteristics. Importantly, electrochemical performance is recovered close to that of their original state: the pseudocapacitance, which decreased by almost 50% due to its oxidation, reverses to approximately 98% of its original value, with good capacitance retention ( ≈ 93%) following 10,000 charge-discharge cycles at 10 A g-1. These promising results allude to the exciting possibility for rejuvenating the material for reuse, therefore offering a more economical and sustainable route that improves its potential for practical translation.

19.
ACS Omega ; 7(45): 41696-41710, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36406498

The pursuit of new and better battery materials has given rise to numerous studies of the possibilities to use two-dimensional negative electrode materials, such as MXenes, in lithium-ion batteries. Nevertheless, both the origin of the capacity and the reasons for significant variations in the capacity seen for different MXene electrodes still remain unclear, even for the most studied MXene: Ti3C2 T x . Herein, freestanding Ti3C2 T x MXene films, composed only of Ti3C2 T x MXene flakes, are studied as additive-free negative lithium-ion battery electrodes, employing lithium metal half-cells and a combination of chronopotentiometry, cyclic voltammetry, X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy experiments. The aim of this study is to identify the redox reactions responsible for the observed reversible and irreversible capacities of Ti3C2 T x -based lithium-ion batteries as well as the reasons for the significant capacity variation seen in the literature. The results demonstrate that the reversible capacity mainly stems from redox reactions involving the T x -Ti-C titanium species situated on the surfaces of the MXene flakes, whereas the Ti-C titanium present in the core of the flakes remains electro-inactive. While a relatively low reversible capacity is obtained for electrodes composed of pristine Ti3C2 T x MXene flakes, significantly higher capacities are seen after having exposed the flakes to water and air prior to the manufacturing of the electrodes. This is ascribed to a change in the titanium oxidation state at the surfaces of the MXene flakes, resulting in increased concentrations of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species. The significant irreversible capacity seen in the first cycles is mainly attributed to the presence of residual water in the Ti3C2 T x electrodes. As the capacities of Ti3C2 T x MXene negative electrodes depend on the concentration of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species and the water content, different capacities can be expected when using different manufacturing, pretreatment, and drying procedures.

20.
J Am Chem Soc ; 144(47): 21596-21605, 2022 11 30.
Article En | MEDLINE | ID: mdl-36383110

On-surface synthesis is a powerful methodology for the fabrication of low-dimensional functional materials. The precursor molecules usually anchor on different metal surfaces via similar configurations. The activation energies are therefore solely determined by the chemical activity of the respective metal surfaces. Here, we studied the influence of the detailed adsorption configuration on the activation energy on different metal surfaces. We systematically studied the desulfonylation homocoupling for a molecular precursor on Au(111) and Ag(111) and found that the activation energy is lower on inert Au(111) than on Ag(111). Combining scanning tunneling microscopy observations, synchrotron radiation photoemission spectroscopy measurements, and density functional theory calculations, we elucidate that the phenomenon arises from different molecule-substrate interactions. The molecular precursors anchor on Au(111) via Au-S interactions, which lead to weakening of the phenyl-S bonds. On the other hand, the molecular precursors anchor on Ag(111) via Ag-O interactions, resulting in the lifting of the S atoms. As a consequence, the activation barrier of the desulfonylation reactions is higher on Ag(111), although silver is generally more chemically active than gold. Our study not only reports a new type of on-surface chemical reaction but also clarifies the influence of detailed adsorption configurations on specific on-surface chemical reactions.


Gold , Silver , Gold/chemistry , Silver/chemistry , Molecular Conformation , Adsorption
...