Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0303395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968223

RESUMEN

BACKGROUND: Phenome-Wide Association study (PheWAS) is a powerful tool designed to systematically screen clinical observations derived from medical records (phenotypes) for association with a variable of interest. Despite their usefulness, no systematic screening of phenotypes associated with Staphylococcus aureus infections (SAIs) has been done leaving potential novel risk factors or complications undiscovered. METHOD AND COHORTS: We tailored the PheWAS approach into a two-stage screening procedure to identify novel phenotypes correlating with SAIs. The first stage screened for co-occurrence of SAIs with other phenotypes within medical records. In the second stage, significant findings were examined for the correlations between their age of onset with that of SAIs. The PheWAS was implemented using the medical records of 754,401 patients from the Marshfield Clinic Health System. Any novel associations discovered were subsequently validated using datasets from TriNetX and All of Us, encompassing 109,884,571 and 118,538 patients respectively. RESULTS: Forty-one phenotypes met the significance criteria of a p-value < 3.64e-5 and odds ratios of > 5. Out of these, we classified 23 associations either as risk factors or as complications of SAIs. Three novel associations were discovered and classified either as a risk (long-term use of aspirin) or complications (iron deficiency anemia and anemia of chronic disease). All novel associations were replicated in the TriNetX cohort. In the All of Us cohort, anemia of chronic disease was replicated according to our significance criteria. CONCLUSIONS: The PheWAS of SAIs expands our understanding of SAIs interacting phenotypes. Additionally, the novel two-stage PheWAS approach developed in this study can be applied to examine other disease-disease interactions of interest. Due to the possibility of bias inherent in observational data, the findings of this study require further investigation.


Asunto(s)
Fenotipo , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Fenómica , Estudio de Asociación del Genoma Completo , Adolescente , Factores de Riesgo , Adulto Joven , Niño
2.
Open Forum Infect Dis ; 11(6): ofae315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38938895

RESUMEN

Background: Dalbavancin is a long-acting lipoglycopeptide antibiotic that is increasingly utilized for infections that require prolonged treatment durations despite the lack of Food and Drug Administration approval for these indications. There is no consensus regarding optimal dosing of dalbavancin for these infections and no available pharmacokinetic studies to identify optimal dosing for long-term use. Methods: An in silico pharmacokinetic simulation was performed to assess the predicted dalbavancin concentration resulting from commonly utilized dosing regimens, in addition to modified regimens. The primary endpoint evaluated was days of median 24-hour free area under the curve over the minimum inhibitory concentration (AUC/MIC) >27.1, the established PK target. Results: A dosing regimen of 1500 mg on day 0 and day 7 resulted in median AUC/breakpoint value above the target for 57 days (lower 95% confidence interval [CI], 37 days). A modified regimen of 1500 mg on day 0 and day 21 resulted in an additional 11 days of median AUC/breakpoint target attainment. The other standard dosing regimen modeled was 1000 mg on day 0, then 500 mg weekly for 5 doses. This regimen achieved the AUC/breakpoint target for 76 days (lower 95% CI, 59 days). This regimen was modified to 1000 mg on day 0, then 500 mg on days 14 and 28, which shortened the median effective treatment duration by 14 days but required 3 fewer doses. Conclusions: These simulated results, when combined with the favorable observational data, support the use of commonly reported dalbavancin regimens for prolonged therapy durations. In addition, these pharmacokinetic/pharmacodynamic data support extending the dosing interval beyond the frequently reported weekly regimens, which should be investigated further with a clinical trial.

3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928191

RESUMEN

Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.


Asunto(s)
Antibacterianos , Bacteriemia , Infecciones Estafilocócicas , Staphylococcus aureus , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Humanos , Staphylococcus aureus/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos
4.
Diagn Microbiol Infect Dis ; 109(2): 116245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522368

RESUMEN

Research and development of innovative antimicrobials is paramount to addressing the antimicrobial resistance threat. Although antimicrobial discovery and development has increased, difficulties have emerged in the pharmaceutical industry after market approval. In this minireview, we summarize clinical trial data on recently approved antibiotics, calculate incremental cost-effectiveness ratio (ICER) values, and explore ways to adapt ICER calculations to the limitations of antimicrobial clinical trial design. We provide a systematic review and analysis of randomized, controlled studies of antibiotics approved from 2014 - 2022 and extracted the relevant clinical data. Adapted-ICER (aICER) calculations were conducted using the primary condition-specific outcome that was reported in each study (percent mortality or percent cure rate). The literature search identified 18 studies for the 8 total antibiotics which met inclusion criteria and contained data required for aICER calculation. aICER values ranged from -$17,374 to $4,966 per percent mortality and -$43,931 to $2,529 per percent cure rate. With regards to mortality, ceftolozane/tazobactam and imipenem/cilastatin/relebactam proved cost efficacious, with aICER values of $4,965 per percent mortality and $1,955 per percent mortality respectively. Finding value in novel antibiotic agents is imperative to further justifying their development, and aICER values are the most common method of determining value in healthcare. The current outcomes of clinical trials are difficult to translate to aICER, which most effectively use Quality-Adjusted Life Years (QALY) as the quality standard in other fields such as oncology. Future antimicrobial trials should consider introducing methods of assessing measures of health gain such as QALY to better translate the value of novel antimicrobials in healthcare.


Asunto(s)
Antibacterianos , Análisis Costo-Beneficio , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/economía , Enfermedades Transmisibles/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349162

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Asunto(s)
Endocarditis Bacteriana , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Cefuroxima/farmacología , Bicarbonatos/farmacología , Staphylococcus aureus , beta-Lactamas/farmacología , Endocarditis Bacteriana/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico
6.
mBio ; 15(2): e0205123, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38126769

RESUMEN

The emergence of multidrug-resistant Gram-negative bacteria underscores the need to define genetic vulnerabilities that can be therapeutically exploited. The Gram-negative pathogen, Acinetobacter baumannii, is considered an urgent threat due to its propensity to evade antibiotic treatments. Essential cellular processes are the target of existing antibiotics and a likely source of new vulnerabilities. Although A. baumannii essential genes have been identified by transposon sequencing, they have not been prioritized by sensitivity to knockdown or antibiotics. Here, we take a systems biology approach to comprehensively characterize A. baumannii essential genes using CRISPR interference (CRISPRi). We show that certain essential genes and pathways are acutely sensitive to knockdown, providing a set of vulnerable targets for future therapeutic investigation. Screening our CRISPRi library against last-resort antibiotics uncovered genes and pathways that modulate beta-lactam sensitivity, an unexpected link between NADH dehydrogenase activity and growth inhibition by polymyxins, and anticorrelated phenotypes that may explain synergy between polymyxins and rifamycins. Our study demonstrates the power of systematic genetic approaches to identify vulnerabilities in Gram-negative pathogens and uncovers antibiotic-essential gene interactions that better inform combination therapies.IMPORTANCEAcinetobacter baumannii is a hospital-acquired pathogen that is resistant to many common antibiotic treatments. To combat resistant A. baumannii infections, we need to identify promising therapeutic targets and effective antibiotic combinations. In this study, we comprehensively characterize the genes and pathways that are critical for A. baumannii viability. We show that genes involved in aerobic metabolism are central to A. baumannii physiology and may represent appealing drug targets. We also find antibiotic-gene interactions that may impact the efficacy of carbapenems, rifamycins, and polymyxins, providing a new window into how these antibiotics function in mono- and combination therapies. Our studies offer a useful approach for characterizing interactions between drugs and essential genes in pathogens to inform future therapies.


Asunto(s)
Acinetobacter baumannii , Rifamicinas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Genes Esenciales , Polimixinas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Rifamicinas/metabolismo , Rifamicinas/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA