Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Neurol Ther ; 11(4): 1595-1607, 2022 Dec.
Article En | MEDLINE | ID: mdl-35933469

INTRODUCTION: Hereditary transthyretin amyloidosis (ATTRv [variant]) is a clinically heterogeneous, progressively debilitating, fatal disease resulting from the deposition of insoluble amyloid fibrils in various organs and tissues. Early diagnosis of ATTRv can be facilitated with genetic testing; however, such testing of the TTR gene identifies variants of uncertain significance (VUS) in a minority of cases, a small percentage of which have the potential to be pathogenic. The Akcea/Ambry VUS Initiative is dedicated to gathering molecular, clinical, and inheritance data for each TTR VUS identified by genetic testing programs to reclassify TTR variants to a clinically actionable status (e.g., variant likely pathogenic [VLP]) where appropriate. METHODS: Classification criteria used here, based on recommendations from the American College of Medical Genetics and Genomics, are stringent and comprehensive, requiring distinct lines of evidence supporting pathogenesis. RESULTS: Three TTR variants have been reclassified from VUS to VLP, including c.194C>T (p.A65V), c.172G>C (p.D58H), and c.239C>T (p.T80I). In each case, the totality of genetic, structural, and clinical evidence provided strong support for pathogenicity. CONCLUSIONS: Based on several lines of evidence, three TTR VUS were reclassified as VLP, resulting in a high likelihood of disease diagnosis for those and subsequent patients as well as at-risk family members.

2.
Orphanet J Rare Dis ; 16(1): 204, 2021 05 06.
Article En | MEDLINE | ID: mdl-33957949

BACKGROUND: The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing the ongoing coronavirus disease 2019 (COVID-19) pandemic has raised serious concern for patients with chronic disease. A correlation has been identified between the severity of COVID-19 and a patient's preexisting comorbidities. Although COVID-19 primarily involves the respiratory system, dysfunction in multiple organ systems is common, particularly in the cardiovascular, gastrointestinal, immune, renal, and nervous systems. Patients with amyloid transthyretin (ATTR) amyloidosis represent a population particularly vulnerable to COVID-19 morbidity due to the multisystem nature of ATTR amyloidosis. MAIN BODY: ATTR amyloidosis is a clinically heterogeneous progressive disease, resulting from the accumulation of amyloid fibrils in various organs and tissues. Amyloid deposition causes multisystem clinical manifestations, including cardiomyopathy and polyneuropathy, along with gastrointestinal symptoms and renal dysfunction. Given the potential for exacerbation of organ dysfunction, physicians note possible unique challenges in the management of patients with ATTR amyloidosis who develop multiorgan complications from COVID-19. While the interplay between COVID-19 and ATTR amyloidosis is still being evaluated, physicians should consider that the heightened susceptibility of patients with ATTR amyloidosis to multiorgan complications might increase their risk for poor outcomes with COVID-19. CONCLUSION: Patients with ATTR amyloidosis are suspected to have a higher risk of morbidity and mortality due to age and underlying ATTR amyloidosis-related organ dysfunction. While further research is needed to characterize this risk and management implications, ATTR amyloidosis patients might require specialized management if they develop COVID-19. The risks of delaying diagnosis or interrupting treatment for patients with ATTR amyloidosis should be balanced with the risk of exposure in the health care setting. Both physicians and patients must adapt to a new construct for care during and possibly after the pandemic to ensure optimal health for patients with ATTR amyloidosis, minimizing treatment interruptions.


Amyloid Neuropathies, Familial , COVID-19 , Amyloid , Humans , Pandemics , Prealbumin , SARS-CoV-2
3.
Nat Commun ; 8(1): 2182, 2017 12 19.
Article En | MEDLINE | ID: mdl-29259151

Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta-slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta-gamma coupling during correct trials. Finally, epochs of high hippocampal theta-prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta-slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.


Cognitive Dysfunction/physiopathology , Gamma Rhythm/physiology , Hippocampus/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Theta Rhythm/physiology , Animals , Cognitive Dysfunction/diagnosis , Cortical Synchronization/physiology , Disease Models, Animal , Electrodes , Female , Hippocampus/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Prefrontal Cortex/cytology
4.
Neuron ; 86(3): 680-95, 2015 May 06.
Article En | MEDLINE | ID: mdl-25913858

22q11.2 deletion carriers show specific cognitive deficits, and ∼30% of them develop schizophrenia. One of the disrupted genes is ZDHHC8, which encodes for a palmitoyltransferase. We show that Zdhhc8-deficient mice have reduced palmitoylation of proteins that regulate axonal growth and branching. Analysis of axonal projections of pyramidal neurons from both Zdhhc8-deficient and Df(16)A(+/-) mice, which model the 22q11.2 deletion, revealed deficits in axonal growth and terminal arborization, which can be prevented by reintroduction of active ZDHHC8 protein. Impaired terminal arborization is accompanied by a reduction in the strength of synaptic connections and altered functional connectivity and working memory. The effect of ZDHHC8 is mediated in part via Cdc42-dependent modulation of Akt/Gsk3ß signaling at the tip of the axon and can be reversed by pharmacologically decreasing Gsk3ß activity during postnatal brain development. Our findings provide valuable mechanistic insights into the cognitive and psychiatric symptoms associated with a schizophrenia-predisposing mutation.


Alzheimer Disease/pathology , Axons/pathology , Brain/pathology , DiGeorge Syndrome/pathology , Acyltransferases/deficiency , Acyltransferases/genetics , Age Factors , Alzheimer Disease/genetics , Animals , Animals, Newborn , Brain/embryology , Brain/metabolism , Channelrhodopsins , DiGeorge Syndrome/genetics , Disease Models, Animal , Embryo, Mammalian , Excitatory Postsynaptic Potentials/genetics , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neural Pathways/embryology , Neural Pathways/growth & development , Neural Pathways/physiology , Neurons/pathology , Neurons/ultrastructure , Phosphopyruvate Hydratase/metabolism , Signal Transduction/genetics , Synapsins/metabolism
5.
Biol Psychiatry ; 77(12): 1041-9, 2015 Jun 15.
Article En | MEDLINE | ID: mdl-25910423

Schizophrenia is caused by a diverse array of risk factors and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate.


Disease Models, Animal , Endophenotypes , Psychotic Disorders/genetics , Psychotic Disorders/physiopathology , Schizophrenia/genetics , Schizophrenia/physiopathology , Schizophrenic Psychology , Animals , Brain/physiopathology , Genetic Predisposition to Disease , Humans , Neural Inhibition , Rats , Risk Factors
6.
J Neurophysiol ; 108(12): 3301-12, 2012 Dec.
Article En | MEDLINE | ID: mdl-23019002

The nucleus of the solitary tract (NTS) receives input from taste buds on the rostral tongue from the chorda tympani (CT) nerve. How this input is processed by the NTS was the subject of the present investigation. Here we used tetrodes to record from pairs or small groups of NTS cells as they responded to taste stimuli or electrical stimulation of the CT nerve in urethane-anesthetized rats. Once a pair (or small group) of NTS cells were isolated and identified as showing an evoked response to CT nerve stimulation, taste stimuli were presented in separate trials. Tastants consisted of 0.1 M NaCl, 0.01 M HCl, 0.01 M quinine HCl, and 0.5 M sucrose. Responses to various patterns of CT stimulation were then recorded. Functional connections among simultaneously recorded NTS cells were implied from analysis of cross-correlation functions of spike trains. We identified four groups of cells, not all of which responded to taste, with staggered latencies of response to CT nerve stimulation, ranging from ∼3 to 35 ms in ∼8- to 12-ms increments. Analyses of putative functional connectivity along with latencies of CT-evoked responses suggested that CT input arrives at the NTS in pulses or waves, each of which activates recurrent excitatory connections among NTS cells. These actions may amplify the incoming signal and refine its temporal pattern.


Nerve Net/physiology , Neurons/physiology , Reaction Time/physiology , Solitary Nucleus/physiology , Taste/physiology , Animals , Electric Stimulation/methods , Male , Rats , Rats, Sprague-Dawley
7.
J Neurophysiol ; 105(4): 1889-96, 2011 Apr.
Article En | MEDLINE | ID: mdl-21307316

Recent studies have provided evidence that temporal coding contributes significantly to encoding taste stimuli at the first central relay for taste, the nucleus of the solitary tract (NTS). However, it is not known whether this coding mechanism is also used at the next synapse in the central taste pathway, the parabrachial nucleus of the pons (PbN). In the present study, electrophysiological responses to taste stimuli (sucrose, NaCl, HCl, and quinine) were recorded from 44 cells in the PbN of anesthetized rats. In 29 cells, the contribution of the temporal characteristics of the response to the discrimination of various taste qualities was assessed. A family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that spike timing in 14 PbN cells (48%) conveyed a significant amount of information about taste quality, beyond what could be conveyed by spike count alone. In another 14 cells (48%), the rate envelope (time course) of the response contributed significantly more information than spike count alone. Across cells there was a significant correlation (r = 0.51; P < 0.01) between breadth of tuning and the proportion of information conveyed by temporal dynamics. Comparison with previous data from the NTS (Di Lorenzo PM and Victor JD. J Neurophysiol 90: 1418-31, 2003 and J Neurophysiol 97: 1857-1861, 2007) showed that temporal coding in the NTS occurred in a similar proportion of cells and contributed a similar fraction of the total information at the same average level of temporal precision, even though trial-to-trial variability was higher in the PbN than in the NTS. These data suggest that information about taste quality conveyed by the temporal characteristics of evoked responses is transmitted with high fidelity from the NTS to the PbN.


Pons/physiology , Rats, Sprague-Dawley/physiology , Sensory Receptor Cells/physiology , Taste Perception/physiology , Action Potentials/physiology , Animals , Evoked Potentials, Somatosensory/physiology , Hydrochloric Acid , Male , Models, Animal , Pons/pathology , Quinine , Rats , Sodium Chloride , Solitary Nucleus/physiology , Sucrose , Synapses/physiology
8.
Front Neurosci ; 4: 175, 2010.
Article En | MEDLINE | ID: mdl-21048894

To qualify as a "basic" taste quality or modality, defined as a group of chemicals that taste alike, three empirical benchmarks have commonly been used. The first is that a candidate group of tastants must have a dedicated transduction mechanism in the peripheral nervous system. The second is that the tastants evoke physiological responses in dedicated afferent taste nerves innervating the oropharyngeal cavity. Last, the taste stimuli evoke activity in central gustatory neurons, some of which may respond only to that group of tastants. Here we argue that water may also be an independent taste modality. This argument is based on the identification of a water dedicated transduction mechanism in the peripheral nervous system, water responsive fibers of the peripheral taste nerves and the observation of water responsive neurons in all gustatory regions within the central nervous system. We have described electrophysiological responses from single neurons in nucleus of the solitary tract (NTS) and parabrachial nucleus of the pons, respectively the first two central relay nuclei in the rodent brainstem, to water presented as a taste stimulus in anesthetized rats. Responses to water were in some cases as robust as responses to other taste qualities and sometimes occurred in the absence of responses to other tastants. Both excitatory and inhibitory responses were observed. Also, the temporal features of the water response resembled those of other taste responses. We argue that water may constitute an independent taste modality that is processed by dedicated neural channels at all levels of the gustatory neuraxis. Water-dedicated neurons in the brainstem may constitute key elements in the regulatory system for fluid in the body, i.e., thirst, and as part of the swallowing reflex circuitry.

9.
J Neurophysiol ; 104(1): 4-17, 2010 Jul.
Article En | MEDLINE | ID: mdl-20445036

Although the cellular organization of many primary sensory nuclei has been well characterized, questions remain about the functional architecture of the first central relay for gustation, the rostral nucleus of the solitary tract (NTS). Here we used electrophysiological data recorded from single cells in the NTS to inform a network model of taste processing. Previous studies showed that electrical stimulation of the chorda tympani (CT) nerve initiates two types of inhibitory influences with different time courses in separate groups of NTS cells. Each type of inhibition targeted cells with distinct taste response properties. Further analyses of these data identified three NTS cell types differentiated by their latency of evoked response, time course of CT evoked inhibition, and degree of selectivity across taste qualities. Based on these results, we designed a model of the NTS consisting of discrete, reciprocally connected, stimulus-specific "cell" assemblies. Input to the network of integrate-and-fire model neurons was based on electrophysiological recordings from the CT nerve. Following successful simulation of paired-pulse CT stimulation, the network was tested for its ability to discriminate between two "taste" stimuli. Network dynamics of the model produced biologically plausible responses from each unit type and enhanced discrimination between taste qualities. We propose that an interactive network of taste quality specific cell assemblies, similar to our model, may account for the coherence in across-neuron patterns of NTS responses between similar tastants.


Models, Neurological , Neurons/physiology , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Taste/physiology , Algorithms , Analysis of Variance , Animals , Cluster Analysis , Computer Simulation , Discrimination, Psychological/physiology , Evoked Potentials/physiology , Feedback, Physiological , Neural Networks, Computer , Neural Pathways/physiology , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Synapses/physiology
10.
Brain Res ; 1275: 24-32, 2009 Jun 12.
Article En | MEDLINE | ID: mdl-19371730

Electrical stimulation of the chorda tympani nerve (CT; innervating taste buds on the rostral tongue) is known to initiate recurrent inhibition in cells in the nucleus of the solitary tract (NTS, the first central relay in the gustatory system). Here, we explored the relationship between inhibitory circuits and the breadth of tuning of taste-responsive NTS neurons. Initially, NTS cells with evoked responses to electrical stimulation of the CT (0.1 ms pulses; 1 Hz) were tested with each of four tastants (0.1 M NaCl, 0.01 M HCl, 0.01 M quinine and 0.5 M sucrose) in separate trials. Next, the CT was electrically stimulated using a paired-pulse (10-2000 ms interpulse interval; blocks of 100 trials) paradigm. Forty-five (30 taste-responsive) of 51 cells with CT-evoked responses (36 taste-responsive) were tested with paired pulses. The majority (34; 75.6%) showed paired-pulse attenuation, defined as fewer evoked spikes in response to the second (test) pulse compared with the first (conditioning) pulse. A bimodal distribution of the peak of paired-pulse attenuation was found with modes at 10 ms and 50 ms in separate groups of cells. Cells with early peak attenuation showed short CT-evoked response latencies and large responses to relatively few taste stimuli. Conversely, cells with late peak attenuation showed long CT-evoked response latencies and small taste responses with less selectivity. Results suggest that the breadth of tuning of an NTS cell may result from the combination of the sensitivities of peripheral nerve inputs and the recurrent influences generated by the circuitry of the NTS.


Neural Inhibition/physiology , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Taste/physiology , Animals , Electric Stimulation/methods , Male , Nerve Net/cytology , Nerve Net/physiology , Rats , Rats, Sprague-Dawley
...