RESUMEN
INTRODUCTION: Children with ventricular shunts undergo frequent neuroimaging, and therefore, radiation exposures, to evaluate shunt malfunctions. The objective of this study was to safely reduce radiation exposure in this population by reducing computed tomography (CT) and increasing "rapid" magnetic resonance imaging (rMRI-shunt) among patients warranting neuroimaging for possible shunt malfunction. METHODS: This was a single-center quality improvement study in a tertiary care pediatric emergency department (ED). We implemented a multidisciplinary guideline for ED shunt evaluation, which promoted the use of rMRI-shunt over CT. We included patients younger than 18 years undergoing an ED shunt evaluation during 11 months of the preintervention and 25 months of the intervention study periods. The primary outcome was the CT rate, and we evaluated the relevant process and balancing measures. RESULTS: There were 266 encounters preintervention and 488 during the intervention periods with similar neuroimaging rates (80.7% versus 81.5%, P = 0.8.) CT decreased from 90.1% to 34.8% (difference -55.3%, 95% confidence interval [CI]: -71.1, -25.8), and rMRI-shunt increased from 9.9% to 65.2% (difference 55.3%, 95% CI: 25.8, 71.1) during the preintervention and intervention periods, respectively. There were increases in the mean time to neuroimaging (53.1 min; [95% CI: 41.6, 64.6]) and ED length of stay (LOS) (52.3 min; [95% CI: 36.8, 67.6]), without changes in total neuroimaging, 72-hour revisits, or follow-up neuroimaging. CONCLUSIONS: Multidisciplinary implementation of a standardized guideline reduced CT and increased rMRI-shunt use in a pediatric ED setting. Clinicians should balance the reduction in radiation exposure with ED rMRI-shunt for patients with ventricular shunts against the increased time of obtaining imaging and LOS.
RESUMEN
BACKGROUND: Sepsis kills almost 5,000 children annually, accounting for 16% of pediatric health care spending in the United States. OBJECTIVES: We sought to identify sepsis within the Electronic Health Record (EHR) of a quaternary children's hospital to characterize disease incidence, improve recognition and response, and track performance metrics. METHODS: Methods are organized in a plan-do-study-act cycle. During the "plan" phase, electronic definitions of sepsis (blood culture and antibiotic within 24 hours) and septic shock (sepsis plus vasoactive medication) were created to establish benchmark data and track progress with statistical process control. The performance of a screening tool was evaluated in the emergency department. During the "do" phase, a novel inpatient workflow is being piloted, which involves regular sepsis screening by nurses using the tool, and a regimented response to high risk patients. RESULTS: Screening tool use in the emergency department reduced time to antibiotics (Fig. 1). Of the 6,159 admissions, EHR definitions identified 1,433 (23.3%) between July and December 2016 with sepsis, of which 159 (11.1%) had septic shock. Hospital mortality for all sepsis patients was 2.2% and 15.7% for septic shock (Table 1). These findings approximate epidemiologic studies of sepsis and severe sepsis, which report a prevalence range of 0.45-8.2% and mortality range of 8.2-25% (Table 2).1-5. CONCLUSIONS/IMPLICATIONS: Implementation of a sepsis screening tool is associated with improved performance. The prevalence of sepsis conditions identified with electronic definitions approximates the epidemiologic landscape characterized by other point-prevalence and administrative studies, providing face validity to this approach, and proving useful for tracking performance improvement.