Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(2): e2103240, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761549

RESUMEN

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research, the current treatment options show limited curative efficacies. Here the authors report a strategy incorporating neutralizing antibodies conjugated to the surface of a photothermal nanoparticle (NP) to capture and inactivate SARS-CoV-2. The NP is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with high-affinity neutralizing antibodies. The multifunctional NP efficiently captures SARS-CoV-2 pseudovirions and completely blocks viral infection to host cells in vitro through the surface neutralizing antibodies. In addition to virus capture and blocking function, the NP also possesses photothermal function to generate heat following irradiation for inactivation of virus. Importantly, the NPs described herein significantly outperform neutralizing antibodies at treating authentic SARS-CoV-2 infection in vivo. This multifunctional NP provides a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus it is expected to provide a broad range of protection against original SARS-CoV-2 and its variants.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , COVID-19/terapia , Inmunoconjugados/administración & dosificación , Nanopartículas , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Reacciones Antígeno-Anticuerpo , COVID-19/inmunología , COVID-19/virología , Evaluación Preclínica de Medicamentos , Calor , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/uso terapéutico , Luz , Ratones , Nanopartículas/uso terapéutico , Fosfatidiletanolaminas , Polietilenglicoles , Polímeros , Receptores Virales/fisiología , Semiconductores , Glicoproteína de la Espiga del Coronavirus/inmunología , Tiadiazoles , Inactivación de Virus
2.
Matter ; 4(6): 2059-2082, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33907732

RESUMEN

SARS-CoV-2 enters host cells through its viral spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells. Here, we show that functionalized nanoparticles, termed "Nanotraps," completely inhibited SARS-CoV-2 infection by blocking the interaction between the spike protein of SARS-CoV-2 and the ACE2 of host cells. The liposomal-based Nanotrap surfaces were functionalized with either recombinant ACE2 proteins or anti-SARS-CoV-2 neutralizing antibodies and phagocytosis-specific phosphatidylserines. The Nanotraps effectively captured SARS-CoV-2 and completely blocked SARS-CoV-2 infection to ACE2-expressing human cell lines and primary lung cells; the phosphatidylserine triggered subsequent phagocytosis of the virus-bound, biodegradable Nanotraps by macrophages, leading to the clearance of pseudotyped and authentic virus in vitro. Furthermore, the Nanotraps demonstrated an excellent biosafety profile in vitro and in vivo. Finally, the Nanotraps inhibited pseudotyped SARS-CoV-2 infection in live human lungs in an ex vivo lung perfusion system. In summary, Nanotraps represent a new nanomedicine for the inhibition of SARS-CoV-2 infection.

3.
bioRxiv ; 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33269351

RESUMEN

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research including several clinical trials, currently there are no completely safe or effective therapeutics to cure the disease. Here we report a strategy incorporating neutralizing antibodies conjugated on the surface of a photothermal nanoparticle to actively capture and inactivate SARS-CoV-2. The photothermal nanoparticle is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with neutralizing antibodies. Such nanoparticles displayed efficient capture of SARS-CoV-2 pseudoviruses, excellent photothermal effect, and complete inhibition of viral entry into ACE2-expressing host cells via simultaneous blocking and inactivating of the virus. This photothermal nanoparticle is a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus providing a broad range of protection against multiple strains of SARS-CoV-2.

4.
Cell Syst ; 10(5): 433-444.e5, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32437685

RESUMEN

Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-to-end pipeline comprised of publicly available software packages that combines machine learning, dimensionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling states without the need for complex biochemical measurements or other prior information. We use LaMDA to analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface, accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands. All instructions needed to implement LaMDA are included in this paper.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Membrana Celular/metabolismo , Microscopía/métodos , Microscopía Fluorescente/métodos , Transducción de Señal/inmunología , Linfocitos T/metabolismo
5.
J Vis Exp ; (155)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32065118

RESUMEN

The signaling and function of a cell are dictated by the dynamic structures and interactions of its surface receptors. To truly understand the structure-function relationship of these receptors in situ, we need to visualize and track them on the live cell surface with enough spatiotemporal resolution. Here we show how to use recently developed Lattice Light-Sheet Microscopy (LLSM) to image T-cell receptors (TCRs) four-dimensionally (4D, space and time) at the live cell membrane. T cells are one of the main effector cells of the adaptive immune system, and here we used T cells as an example to show that the signaling and function of these cells are driven by the dynamics and interactions of the TCRs. LLSM allows for 4D imaging with unprecedented spatiotemporal resolution. This microscopy technique therefore can be generally applied to a wide array of surface or intracellular molecules of different cells in biology.


Asunto(s)
Microscopía Fluorescente/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Membrana Celular , Ratones Noqueados , Transducción de Señal , Sinapsis/fisiología , Linfocitos T/citología
6.
Curr Opin Chem Eng ; 19: 9-20, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29623254

RESUMEN

CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity might be the future direction, along with precision targeting and effective delivery of tumor-specific, memory CD8+ T cells and NK cells.

7.
Oncotarget ; 8(31): 50731-50746, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881599

RESUMEN

Breast cancer initiation, progression and metastasis rely on a complex interplay between tumor cells and their surrounding microenvironment. Infiltrating immune cells, including macrophages, promote mammary tumor progression and metastasis; however, less is known about the role of macrophages in early stage lesions. In this study, we utilized a transplantable p53-null model of early progression to characterize the immune cell components of early stage lesions. We show that macrophages are recruited to ductal hyperplasias with a high tumor-forming potential where they are differentiated and polarized toward a tumor-promoting phenotype. These macrophages are a unique subset of macrophages, characterized by pro-inflammatory, anti-inflammatory and immunosuppressive factors. Macrophage ablation studies showed that macrophages are required for both early stage progression and primary tumor formation. These studies suggest that therapeutic targeting of tumor-promoting macrophages may not only be an effective strategy to block tumor progression and metastasis, but may also have critical implications for breast cancer prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA