Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Am J Respir Cell Mol Biol ; 70(5): 414-423, 2024 May.
Article En | MEDLINE | ID: mdl-38315810

The role of alternative splicing in chronic obstructive pulmonary disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared with non-COPD control subjects and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-sequencing analysis of bronchial brushings from 23 patients with mild-to-moderate COPD, 121 with severe COPD, and 23 non-COPD control subjects. We found a significant difference in the frequency of alternative splicing events in patients with mild-to-moderate and severe COPD compared with non-COPD control subjects. There were from two to eight times (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The severe COPD samples showed less intron retention and more exon skipping. It is interesting that the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of patients with COPD and control subjects, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The results provide a better understanding of COPD-related alternative splicing changes.


Alternative Splicing , Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Alternative Splicing/genetics , Male , Female , Transcriptome/genetics , Aged , Middle Aged , Severity of Illness Index , Case-Control Studies , Exons/genetics
2.
ERJ Open Res ; 9(6)2023 Nov.
Article En | MEDLINE | ID: mdl-38020574

Introduction: A subset of COPD patients develops advanced disease with severe airflow obstruction, hyperinflation and extensive emphysema. We propose that the pathogenesis in these patients differs from mild-moderate COPD and is reflected by bronchial gene expression. The aim of the present study was to identify a unique bronchial epithelial gene signature for severe COPD patients. Methods: We obtained RNA sequencing data from bronchial brushes from 123 ex-smokers with severe COPD, 23 with mild-moderate COPD and 23 non-COPD controls. We identified genes specific to severe COPD by comparing severe COPD to non-COPD controls, followed by removing genes that were also differentially expressed between mild-moderate COPD and non-COPD controls. Next, we performed a pathway analysis on these genes and evaluated whether this signature is retained in matched nasal brushings. Results: We identified 219 genes uniquely differentially expressed in severe COPD. Interaction network analysis identified VEGFA and FN1 as the key genes with the most interactions. Genes were involved in extracellular matrix regulation, collagen binding and the immune response. Of interest were 10 genes (VEGFA, DCN, SPARC, COL6A2, MGP, CYR61, ANXA6, LGALS1, C1QA and C1QB) directly connected to fibronectin 1 (FN1). Most of these genes were lower expressed in severe COPD and showed the same effect in nasal brushings. Conclusions: We found a unique severe COPD bronchial gene signature with key roles for VEGFA and FN1, which was retained in the upper airways. This supports the hypothesis that severe COPD, at least partly, comprises a different pathology and supports the potential for biomarker development based on nasal brushes in COPD.

3.
iScience ; 26(9): 107597, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37664617

High interleukin (IL)-6 levels are associated with greater COVID-19 severity. IL-6 receptor blockade by tocilizumab (anti-IL6R; Actemra) is used globally for the treatment of severe COVID-19, yet a molecular understanding of the therapeutic benefit remains unclear. We characterized the immune profile and identified cellular and molecular pathways modified by tocilizumab in peripheral blood samples from patients enrolled in the COVACTA study, a phase 3, randomized, double-blind, placebo-controlled trial of the efficacy and safety of tocilizumab in hospitalized patients with severe COVID-19. We identified markers of inflammation, lymphopenia, myeloid dysregulation, and organ injury that predict disease severity and clinical outcomes. Proteomic analysis confirmed a pharmacodynamic effect for tocilizumab and identified novel pharmacodynamic biomarkers. Transcriptomic analysis revealed that tocilizumab treatment leads to faster resolution of lymphopenia and myeloid dysregulation associated with severe COVID-19, indicating greater anti-inflammatory activity relative to placebo and potentially leading to faster recovery in patients hospitalized with COVID-19.

4.
Crit Care ; 27(1): 234, 2023 06 13.
Article En | MEDLINE | ID: mdl-37312169

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Angiopoietin-2 , Critical Illness , Pandemics , Prognosis
5.
Clin Transl Sci ; 16(6): 1049-1062, 2023 06.
Article En | MEDLINE | ID: mdl-36929625

Observational studies have identified the potential prognostic value for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral load and anti-SARS-CoV-2 antibodies in coronavirus disease 2019 (COVID-19). However, viral load in nasopharyngeal (NP) swabs produced inconsistent results in prognostic analyses, and the prognostic value of viral load or antibodies has not been confirmed in large clinical trials. COVACTA and REMDACTA were double-blind, randomized, controlled trials with a combined enrollment of 1078 patients hospitalized with COVID-19 treated with tocilizumab or placebo in COVACTA or tocilizumab plus remdesivir or placebo plus remdesivir in REMDACTA. We assessed the potential prognostic value of NP and serum SARS-CoV-2 viral load and serum anti-SARS-CoV-2 antibodies at baseline as biomarkers for clinical outcomes in patients enrolled in these trials. In adjusted Cox proportional hazard models, serum viral load was a more reliable predictor of clinical outcomes than NP viral load; high serum viral load was associated with higher risk for death and mechanical ventilation/death and lower likelihood of hospital discharge (high vs. negative viral load hazard ratios [95% confidence interval {CI}] were 2.87 [1.57-5.25], 3.86 [2.23-6.68], and 0.23 [0.14-0.36], respectively, in COVACTA and 8.11 [2.95-22.26], 10.29 [4.5-23.55], and 0.21 [0.15-0.29], respectively, in REMDACTA) and high serum viral load correlated with levels of inflammatory cytokines and lung damage biomarkers. High anti-SARS-CoV-2 spike protein antibody (ACOV2S) levels were associated with higher likelihood of hospital discharge (high vs. below the limit of quantification hazard ratios [95% CI] were 2.55 [1.59-4.08] for COVACTA and 1.54 [1.13-2.09] for REMDACTA). These results support the role of baseline SARS-CoV-2 serum viral load and ACOV2S antibody titers in predicting clinical outcomes for patients hospitalized with COVID-19.


COVID-19 , Humans , SARS-CoV-2 , Prognosis , Viral Load , Lung , Antibodies, Viral
6.
Crit Care Med ; 51(1): 103-116, 2023 01 01.
Article En | MEDLINE | ID: mdl-36519984

OBJECTIVES: Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS. This study aimed to evaluate safety and efficacy of astegolimab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that activates IL-22 signaling, for treatment of severe COVID-19 pneumonia. DESIGN: Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL). SETTING: Hospitals. PATIENTS: Hospitalized adults with severe COVID-19 pneumonia. INTERVENTIONS: Patients were randomized to receive IV astegolimab, efmarodocokin alfa, or placebo, plus standard of care. The primary endpoint was time to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by day 28. MEASUREMENTS AND MAIN RESULTS: The study randomized 396 patients. Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, versus 10 days for placebo. Key secondary endpoints (improved recovery, mortality, or prevention of worsening) showed no treatment benefits. No new safety signals were observed and adverse events were similar across treatment arms. Biomarkers demonstrated that both drugs were pharmacologically active. CONCLUSIONS: Treatment with astegolimab or efmarodocokin alfa did not improve time to recovery in patients with severe COVID-19 pneumonia.


COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Interleukin-33 , SARS-CoV-2 , Interleukin-1 Receptor-Like 1 Protein , Treatment Outcome
7.
Crit Care Med ; 50(3): 398-409, 2022 03 01.
Article En | MEDLINE | ID: mdl-34612846

OBJECTIVES: To explore candidate prognostic and predictive biomarkers identified in retrospective observational studies (interleukin-6, C-reactive protein, lactate dehydrogenase, ferritin, lymphocytes, monocytes, neutrophils, d-dimer, and platelets) in patients with coronavirus disease 2019 pneumonia after treatment with tocilizumab, an anti-interleukin-6 receptor antibody, using data from the COVACTA trial in patients hospitalized with severe coronavirus disease 2019 pneumonia. DESIGN: Exploratory analysis from a multicenter, randomized, double-blind, placebo-controlled, phase 3 trial. SETTING: Hospitals in North America and Europe. PATIENTS: Adults hospitalized with severe coronavirus disease 2019 pneumonia receiving standard care. INTERVENTION: Randomly assigned 2:1 to IV tocilizumab 8 mg/kg or placebo. MEASUREMENTS AND MAIN RESULTS: Candidate biomarkers were measured in 295 patients in the tocilizumab arm and 142 patients in the placebo arm. Efficacy outcomes assessed were clinical status on a seven-category ordinal scale (1, discharge; 7, death), mortality, time to hospital discharge, and mechanical ventilation (if not receiving it at randomization) through day 28. Prognostic and predictive biomarkers were evaluated continuously with proportional odds, binomial or Fine-Gray models, and additional sensitivity analyses. Modeling in the placebo arm showed all candidate biomarkers except lactate dehydrogenase and d-dimer were strongly prognostic for day 28 clinical outcomes of mortality, mechanical ventilation, clinical status, and time to hospital discharge. Modeling in the tocilizumab arm showed a predictive value of ferritin for day 28 clinical outcomes of mortality (predictive interaction, p = 0.03), mechanical ventilation (predictive interaction, p = 0.01), and clinical status (predictive interaction, p = 0.02) compared with placebo. CONCLUSIONS: Multiple biomarkers prognostic for clinical outcomes were confirmed in COVACTA. Ferritin was identified as a predictive biomarker for the effects of tocilizumab in the COVACTA patient population; high ferritin levels were associated with better clinical outcomes for tocilizumab compared with placebo at day 28.


Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Biomarkers , COVID-19/mortality , Double-Blind Method , Female , Humans , Inflammation Mediators/metabolism , Length of Stay , Male , Patient Discharge , Prognosis , Respiration, Artificial , SARS-CoV-2
8.
Pediatr Pulmonol ; 57(2): 519-528, 2022 02.
Article En | MEDLINE | ID: mdl-34842360

BACKGROUND: Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS: We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS: Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS: SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.


Influenza, Human , Lung Injury , Respiratory Distress Syndrome , Animals , Biomarkers , Child , Humans , Influenza, Human/complications , Lung Injury/complications , Mice , Pulmonary Surfactant-Associated Protein D
9.
BMC Pulm Med ; 21(1): 301, 2021 Sep 23.
Article En | MEDLINE | ID: mdl-34556083

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbations are heterogenous and profoundly impact the disease trajectory. Bioactive lipid lysophosphatidic acid (LPA) has been implicated in airway inflammation but the significance of LPA in COPD exacerbation is not known. The aim of the study was to investigate the utility of serum LPA species (LPA16:0, 18:0, 18:1, 18:2, 20:4) as biomarkers of COPD exacerbation. PATIENTS AND METHODS: LPA species were measured in the baseline placebo sera of a COPD randomized controlled trial. Tertile levels of each LPA were used to assign patients into biomarker high, medium, and low subgroups. Exacerbation rate and risk were compared among the LPA subgroups. RESULTS: The levels of LPA species were intercorrelated (rho 0.29-0.91). Patients with low and medium levels of LPA (LPA16:0, 20:4) had significantly higher exacerbation rate compared to the respective LPA-high patients [estimated rate per patient per year (95% CI)]: LPA16:0-low = 1.2 (0.8-1.9) (p = 0.019), LPA16:0-medium = 1.3 (0.8-2.0) (p = 0.013), LPA16:0-high = 0.5 (0.2-0.9); LPA20:4-low = 1.4 (0.9-2.1) (p = 0.0033), LPA20:4-medium = 1.2 (0.8-1.8) (p = 0.0089), LPA20:4-high = 0.4 (0.2-0.8). These patients also had earlier time to first exacerbation (hazard ratio (95% CI): LPA16:0-low = 2.6 (1.1-6.0) (p = 0.028), LPA16:0-medium = 2.7 (1.2-6.3) (p = 0.020); LPA20.4-low = 2.8 (1.2-6.6) (p = 0.017), LPA20:4-medium = 2.7 (1.2-6.4) (p = 0.021). Accordingly, these patients had a significant increased exacerbation risk compared to the respective LPA-high subgroups [odd ratio (95% CI)]: LPA16:0-low = 3.1 (1.1-8.8) (p = 0.030), LPA16:0-medium = 3.0 (1.1-8.3) (p = 0.031); LPA20:4-low = 3.8 (1.3-10.9) (p = 0.012), LPA20:4-medium = 3.3 (1.2-9.5) (p = 0.025). For the other LPA species (LPA18:0, 18:1, 18:2), the results were mixed; patients with low and medium levels of LPA18:0 and 18:2 had increased exacerbation rate, but only LPA18:0-low patients had significant increase in exacerbation risk and earlier time to first exacerbation compared to the LPA18:0-high subgroup. CONCLUSIONS: The study provided evidence of association between systemic LPA levels and exacerbation in COPD. Patients with low and medium levels of specific LPA species (LPA16:0, 20:4) had increased exacerbation rate, risk, and earlier time to first exacerbation. These non-invasive biomarkers may aid in identifying high risk patients with dysregulated LPA pathway to inform risk management and drug development.


Lysophospholipids/blood , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Biomarkers/blood , Disease Progression , Female , Humans , Logistic Models , Male , Middle Aged , Proportional Hazards Models , Randomized Controlled Trials as Topic , Severity of Illness Index
10.
ERJ Open Res ; 7(3)2021 Jul.
Article En | MEDLINE | ID: mdl-34350278

INTRODUCTION: COPD exacerbations are heterogeneous and can be triggered by bacterial, viral, or noninfectious insults. Exacerbations are also heterogeneous in neutrophilic or eosinophilic inflammatory responses. A noninvasive peripheral biomarker of COPD exacerbations characterised by bacterial/neutrophilic inflammation is lacking. Granulocyte-colony stimulating factor (G-CSF) is a key cytokine elevated during bacterial infection and mediates survival, proliferation, differentiation and function of neutrophils. OBJECTIVE: We hypothesised that high peripheral G-CSF would be indicative of COPD exacerbations with a neutrophilic and bacterial phenotype associated with microbial dysbiosis. METHODS: Serum G-CSF was measured during hospitalised exacerbation (day 0 or D0) and after 30 days of recovery (Day30 or D30) in 37 subjects. In a second cohort, serum and sputum cytokines were measured in 59 COPD patients during stable disease, at exacerbation, and at 2-weeks and 6-weeks following exacerbation. RESULTS: Serum G-CSF was increased during exacerbation in a subset of patients. These exacerbations were enriched for bacterial but not viral or type-2 biologies. The median serum G-CSF level was 1.6-fold higher in bacterial exacerbation compared to nonbacterial exacerbation (22 pg·mL-1 versus 13 pg·mL-1, p=0.0007). Serum G-CSF classified bacterial exacerbations with an area under the curve (AUC) for the receiver operating characteristic (ROC) curve equal to 0.76. Exacerbations with a two-fold or greater increase in serum G-CSF were characterised by neutrophilic inflammation, with increased sputum and blood neutrophils, and high sputum interleukin (IL)-1ß, IL-6 and serum amyloid A1 (SAA1) levels. These exacerbations were preceded by dysbiosis, with decreased microbiome diversity and enrichment of respiratory pathogens such as Haemophilus and Moraxella. Furthermore, serum G-CSF at exacerbation classified neutrophilic-dysbiotic exacerbations (AUC for the ROC curve equal to 0.75). CONCLUSIONS: High serum G-CSF enriches for COPD exacerbations characterised by neutrophilic inflammation with underlying bacterial dysbiosis.

11.
Open Forum Infect Dis ; 7(5): ofaa122, 2020 May.
Article En | MEDLINE | ID: mdl-32420403

BACKGROUND: Biomarkers are needed for early identification of patients at risk of severe complications from influenza infection, including prolonged respiratory failure and death. Eicosanoids are bioactive lipid mediators with pro- and anti-inflammatory properties produced in response to infection. This study assessed the relationships between the host bioactive lipid response, influenza viral load, and clinical outcomes. METHODS: Influenza-positive, intubated children ≤18 years old were enrolled across 26 US pediatric intensive care units (PICUs). Mass spectrometry was used to measure >100 lipid metabolites in endotracheal and nasopharyngeal samples. Influenza viral load was measured by quantitative polymerase chain reaction. RESULTS: Age and bacterial co-infection were associated with multiple bioactive lipids (P < .05). Influenza viral load was lower in patients with bacterial co-infection compared with those without, and pro-inflammatory bioactive lipids positively correlated with viral load in bacterially co-infected children (P < .05). Lipids associated with disease resolution correlated with viral load in patients without bacterial co-infection (P < .01). After adjusting for age and bacterial co-infection status, elevated pro- and anti-inflammatory lipids measured early in the intensive care unit course were associated with higher mortality, whereas influenza viral load and endotracheal cytokine levels were not associated with clinical outcomes. Prostaglandin E2, arachidonic acid, docosahexaenoic acid, and 12-hydroxyeicosatetraenoic acid measured within 72 hours of PICU admission predicted death or prolonged (≥28 days) mechanical ventilator support (area under the curve, 0.72-0.79; P < .02) not explained by admission illness severity. CONCLUSIONS: Children with influenza-related complications have early bioactive lipid responses that may reflect lung disease severity. Respiratory bioactive lipids are candidate prognostic biomarkers to identify children with the most severe clinical outcomes.

12.
Clin Transl Immunology ; 9(2): e1110, 2020.
Article En | MEDLINE | ID: mdl-32082571

OBJECTIVES: To identify risk stratification biomarkers to enrich for the subset of Staphylococcus aureus bacteraemia patients who develop deep-seated tissue infections with high morbidity and mortality to guide clinical trial enrolment and clinical management. METHODS: We evaluated the prognostic value of eight biomarkers for persistent bacteraemia, mortality and endovascular infection foci in a validation cohort of 160 patients with S. aureus bacteraemia enrolled consecutively over 3 years. RESULTS: High levels of IL-17A, IL-10 or soluble E-selectin at bacteraemia diagnosis correlated with the duration of positive blood cultures. When thresholds defined in an independent cohort were applied, these biomarkers were robust predictors of persistent bacteraemia or endovascular infection. High serum levels of IL-17A and IL-10 often preceded the radiographic diagnosis of infective endocarditis, suggesting potential utility for prioritising diagnostic radiographic imaging. High IL-8 was prognostic for all-cause mortality, while IL-17A and IL-10 were superior to clinical metrics in discriminating between attributable mortality and non-attributable mortality. High IL-17A and IL-10 identified more patients who developed microbiological failure or mortality than were identified by infective endocarditis diagnosis. CONCLUSION: These biomarkers offer potential utility to identify patients at risk of persistent bacteraemia to guide diagnostic imaging and clinical management. Low biomarker levels could be used to rule out the need for more invasive TEE imaging in patients at lower risk of infective endocarditis. These biomarkers could enable clinical trials by enriching for patients with the greatest need for novel therapies.

13.
Open Forum Infect Dis ; 6(4): ofz126, 2019 Apr.
Article En | MEDLINE | ID: mdl-31041341

BACKGROUND: Staphylococcus aureus is a leading global cause of bacteremia that can cause invasive tissue infections with high morbidity and mortality despite appropriate antibiotic therapy. Clinicians lack sufficient tools to rapidly identify patients with a poor prognosis to guide diagnostic workup and treatment decisions. Host cell-free DNA provides prognostic value across a spectrum of critical illnesses, including S. aureus bacteremia and sepsis. Metrics of high bacterial load are associated with disease severity in S. aureus bacteremia, and the objective of this study was to evaluate whether incorporating quantitation of cell-free bacterial DNA would provide additive prognostic value when combined with biomarkers of the inflammatory response. METHODS: S. aureus cell-free DNA was measured by quantitative polymerase chain reaction (PCR) in baseline serum samples from an observational cohort of 111 patients with complicated S. aureus bacteremia and correlated with host inflammatory markers and clinical outcomes. RESULTS: High levels of S. aureus cell-free DNA at the time of positive index blood culture were prognostic for all-cause and attributable mortality and persistent bacteremia and were associated with infective endocarditis. However, they did not provide additive value to biomarkers of the host response to infection in multivariate analysis. CONCLUSIONS: Measurements of bacterial load by PCR are a clinically feasible candidate biomarker for stratifying patients at higher risk for complications and poor outcomes. Their diagnostic and prognostic value for identifying foci of infection and influencing treatment remain to be evaluated in additional cohorts.

14.
Open Forum Infect Dis ; 6(4): ofz090, 2019 Apr.
Article En | MEDLINE | ID: mdl-31024970

BACKGROUND: Staphylococcus aureus (SA) bacteremia often requires a long treatment duration with antibiotics to prevent relapse due to the ability of SA to establish reservoirs of infection in sites such as heart and bone. These metastatic sites of infection cannot be serially sampled to monitor the clearance of SA infection. This study aimed to establish a link between persistence of circulating SA deoxyribonucleic acid (SA-DNA) and tissue reservoirs in patients with SA bacteremia. METHODS: A highly sensitive quantitative polymerase chain reaction was used to measure whole blood SA-DNA and plasma-derived SA cell-free DNA (SA-cfDNA) in a set of longitudinal samples from 73 patients with confirmed SA bacteremia and correlated with clinical features. RESULTS: Blood SA-DNA was detected for longer than the duration of positive blood cultures. Longer duration of circulating bacterial DNA was observed in complicated SA bacteremia infections, such as endocarditis and osteoarticular infections, compared with uncomplicated bloodstream infections. In contrast, traditional blood cultures demonstrated similar time to clearance regardless of foci of infection. Plasma-derived SA-cfDNA showed concordance with blood SA-DNA levels. Baseline levels of SA-DNA were higher in patients presenting with greater clinical severity and complicated bacteremia. CONCLUSIONS: Prolonged levels of circulating SA-DNA in patients with complicated tissue reservoirs after clearance of blood cultures observed in this single-center study should be validated in additional cohorts to assess the potential utility for monitoring clearance of infection in patients with SA bacteremia.

15.
Clin Infect Dis ; 68(9): 1502-1511, 2019 04 24.
Article En | MEDLINE | ID: mdl-30165412

BACKGROUND: Staphylococcus aureus is a leading cause of bacteremia, yet there remains a significant knowledge gap in the identification of relevant biomarkers that predict clinical outcomes. Heterogeneity in the host response to invasive S. aureus infection suggests that specific biomarker signatures could be utilized to differentiate patients prone to severe disease, thereby facilitating earlier implementation of more aggressive therapies. METHODS: To further elucidate the inflammatory correlates of poor clinical outcomes in patients with S. aureus bacteremia, we evaluated the association between a panel of blood proteins at initial presentation of bacteremia and disease severity outcomes using 2 cohorts of patients with S. aureus bacteremia (n = 32 and n = 124). RESULTS: We identified 13 candidate proteins that were correlated with mortality and persistent bacteremia. Prognostic modeling identified interleukin (IL)-8 and CCL2 as the strongest individual predictors of mortality, with the combination of these biomarkers classifying fatal outcome with 89% sensitivity and 77% specificity (P < .0001). Baseline IL-17A levels were elevated in patients with persistent bacteremia (P < .0001), endovascular (P = .026) and metastatic tissue infections (P = .012). CONCLUSIONS: These results demonstrate the potential utility of selected biomarkers to distinguish patients with the highest risk for treatment failure and bacteremia-related complications, providing a valuable tool for clinicians in the management of S. aureus bacteremia. Additionally, these biomarkers could identify patients with the greatest potential to benefit from novel therapies in clinical trials.


Bacteremia/diagnosis , Chemokine CCL2/blood , Endocarditis, Bacterial/diagnosis , Interleukin-8/blood , Staphylococcal Infections/diagnosis , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Bacteremia/complications , Bacteremia/drug therapy , Bacteremia/mortality , Biomarkers/blood , Case-Control Studies , Endocarditis, Bacterial/complications , Endocarditis, Bacterial/drug therapy , Endocarditis, Bacterial/mortality , Female , Humans , Interleukin-17/blood , Male , Middle Aged , Prognosis , Sensitivity and Specificity , Severity of Illness Index , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Staphylococcal Infections/mortality , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/pathogenicity , Survival Analysis
17.
Article En | MEDLINE | ID: mdl-28807912

MHAA4549A, a human monoclonal antibody targeting the hemagglutinin stalk region of influenza A virus (IAV), is being developed as a therapeutic for patients hospitalized with severe IAV infection. The safety and efficacy of MHAA4549A were assessed in a randomized, double-blind, placebo-controlled, dose-ranging study in a human IAV challenge model. One hundred healthy volunteers were inoculated with A/Wisconsin/67/2005 (H3N2) IAV and, 24 to 36 h later, administered a single intravenous dose of either placebo, MHAA4549A (400, 1,200, or 3,600 mg), or a standard oral dose of oseltamivir. Subjects were assessed for safety, pharmacokinetics (PK), and immunogenicity. The intent-to-treat-infected (ITTI) population was assessed for changes in viral load, influenza symptoms, and inflammatory biomarkers. MHAA4549A was well tolerated in all IAV challenge subjects. The 3,600-mg dose of MHAA4549A significantly reduced the viral burden relative to that of the placebo as determined by the area under the curve (AUC) of nasopharyngeal virus infection, quantified using quantitative PCR (98%) and 50% tissue culture infective dose (TCID50) (100%) assays. Peak viral load, duration of viral shedding, influenza symptom scores, mucus weight, and inflammatory biomarkers were also reduced. Serum PK was linear with a half-life of ∼23 days. No MHAA4549A-treated subjects developed anti-drug antibodies. In conclusion, MHAA4549A was well tolerated and demonstrated statistically significant and substantial antiviral activity in an IAV challenge model. (This study has been registered at ClinicalTrials.gov under identifier NCT01980966.).


Antibodies, Monoclonal/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Influenza, Human/drug therapy , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacokinetics , Drug Resistance, Viral/drug effects , Healthy Volunteers , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/virology , Male , Nasopharyngeal Diseases/virology , Treatment Outcome , Viral Load , Virus Shedding , Young Adult
18.
Nat Med ; 23(8): 975-983, 2017 Aug.
Article En | MEDLINE | ID: mdl-28714988

Previous studies have reported associations of IFITM3 SNP rs12252 with severe influenza, but evidence of association and the mechanism by which risk is conferred remain controversial. We prioritized SNPs in IFITM3 on the basis of putative biological function and identified rs34481144 in the 5' UTR. We found evidence of a new association of rs34481144 with severe influenza in three influenza-infected cohorts characterized by different levels of influenza illness severity. We determined a role for rs34481144 as an expression quantitative trait locus (eQTL) for IFITM3, with the risk allele associated with lower mRNA expression. The risk allele was found to have decreased IRF3 binding and increased CTCF binding in promoter-binding assays, and risk allele carriage diminished transcriptional correlations among IFITM3-neighboring genes, indicative of CTCF boundary activity. Furthermore, the risk allele disrupts a CpG site that undergoes differential methylation in CD8+ T cell subsets. Carriers of the risk allele had reduced numbers of CD8+ T cells in their airways during natural influenza infection, consistent with IFITM3 promoting accumulation of CD8+ T cells in airways and indicating that a critical function for IFITM3 may be to promote immune cell persistence at mucosal sites.Our study identifies a new regulator of IFITM3 expression that associates with CD8+ T cell levels in the airways and a spectrum of clinical outcomes.


Influenza, Human/genetics , Interferon Regulatory Factor-3/metabolism , Membrane Proteins/genetics , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/metabolism , Alleles , Blotting, Western , CCCTC-Binding Factor , CD8-Positive T-Lymphocytes/immunology , DNA Methylation , Genetic Predisposition to Disease , Genotype , Humans , Influenza, Human/immunology , Membrane Proteins/immunology , Nasal Lavage Fluid/cytology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA-Binding Proteins/immunology , Severity of Illness Index
19.
J Infect Dis ; 216(1): 14-21, 2017 07 01.
Article En | MEDLINE | ID: mdl-28531322

Background: Interferon-induced transmembrane protein 3 (IFITM3) restricts endocytic fusion of influenza virus. IFITM3 rs12252_C, a putative alternate splice site, has been associated with influenza severity in adults. IFITM3 has not been evaluated in pediatric influenza. Methods: The Pediatric Influenza (PICFLU) study enrolled children with suspected influenza infection across 38 pediatric intensive care units during November 2008 to April 2016. IFITM3 was sequenced in patients and parents were genotyped for specific variants for family-based association testing. rs12252 was genotyped in 54 African-American pediatric outpatients with influenza (FLU09), included in the population-based comparisons with 1000 genomes. Splice site analysis of rs12252_C was performed using PICFLU and FLU09 patient RNA. Results: In PICFLU, 358 children had influenza infection. We identified 22 rs12252_C homozygotes in 185 white non-Hispanic children. rs12252_C was not associated with influenza infection in population or family-based analyses. We did not identify the Δ21 IFITM3 isoform in RNAseq data. The rs12252 genotype was not associated with IFITM3 expression levels, nor with critical illness severity. No novel rare IFITM3 functional variants were identified. Conclusions: rs12252 was not associated with susceptibility to influenza-related critical illness in children or with critical illness severity. Our data also do not support it being a splice site.


Influenza, Human/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Black or African American/genetics , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genotyping Techniques , Homozygote , Humans , Influenza A virus , Male , Polymorphism, Single Nucleotide , Prospective Studies , Protein Isoforms/genetics , RNA, Viral/isolation & purification
20.
PLoS Pathog ; 13(4): e1006305, 2017 Apr.
Article En | MEDLINE | ID: mdl-28380049

Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that suppress protein levels by binding target sequences on their cognate mRNA. Here, we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses in primary mouse lung epithelial cells: influenza virus, EMCV, and VSV. We identified the transcriptional network regulated by miR-144 and demonstrate that miR-144 post-transcriptionally suppresses TRAF6 levels. In vivo ablation of miR-144 reduced influenza virus replication in the lung and disease severity. These data suggest that miR-144 reduces the antiviral response by attenuating the TRAF6-IRF7 pathway to alter the cellular antiviral transcriptional landscape.


Influenza, Human/immunology , MicroRNAs/metabolism , Orthomyxoviridae/genetics , Signal Transduction , TNF Receptor-Associated Factor 6/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Animals , Cell Line , Epithelial Cells/virology , Gene Expression Profiling , Genes, Reporter , Humans , Influenza, Human/virology , Lung/virology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Viral Load , Virus Replication
...