Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Nat Commun ; 15(1): 3909, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724493

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.


Colonic Neoplasms , Drug Resistance, Neoplasm , Phosphoproteins , Proteomics , Signal Transduction , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Proteomics/methods , Phosphoproteins/metabolism , Signal Transduction/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Cell Line, Tumor , Phosphorylation , Algorithms , Proteome/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
STAR Protoc ; 4(2): 102293, 2023 May 12.
Article En | MEDLINE | ID: mdl-37182203

The Size-Exclusion Chromatography Analysis Toolkit (SECAT) elucidates protein complex dynamics using co-fractionated bottom-up mass spectrometry (CF-MS) data. Here, we present a protocol for the network-centric analysis and interpretation of CF-MS profiles using SECAT. We describe the technical steps for preprocessing, scoring, semi-supervised machine learning, and quantification, including common pitfalls and their solutions. We further provide guidance for data export, visualization, and the interpretation of SECAT results to discover dysregulated proteins and interactions, supporting new hypotheses and biological insights. For complete details on the use and execution of this protocol, please refer to Rosenberger et al. (2020).1.

4.
bioRxiv ; 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36824919

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. By leveraging progress in proteomic technologies and network-based methodologies, over the past decade, we developed VESPA-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and used it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogation of tumor-specific enzyme/substrate interactions accurately inferred kinase and phosphatase activity, based on their inferred substrate phosphorylation state, effectively accounting for signal cross-talk and sparse phosphoproteome coverage. The analysis elucidated time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring that was experimentally confirmed by CRISPRko assays, suggesting broad applicability to cancer and other diseases.

5.
Clin Transl Med ; 13(2): e1179, 2023 02.
Article En | MEDLINE | ID: mdl-36781298

BACKGROUND: The biguanide drug metformin is a safe and widely prescribed drug for type 2 diabetes. Interestingly, hundreds of clinical trials have been set to evaluate the potential role of metformin in the prevention and treatment of cancer including colorectal cancer (CRC). However, the "metformin signaling" remains controversial. AIMS AND METHODS: To interrogate cell signaling induced by metformin in CRC and explore the druggability of the metformin-rewired phosphorylation network, we performed integrative analysis of phosphoproteomics, bioinformatics, and cell proliferation assays on a panel of 12 molecularly heterogeneous CRC cell lines. Using the high-resolute data-independent analysis mass spectrometry (DIA-MS), we monitored a total of 10,142 proteins and 56,080 phosphosites (P-sites) in CRC cells upon a short- and a long-term metformin treatment. RESULTS AND CONCLUSIONS: We found that metformin tended to primarily remodel cell signaling in the long-term and only minimally regulated the total proteome expression levels. Strikingly, the phosphorylation signaling response to metformin was highly heterogeneous in the CRC panel, based on a network analysis inferring kinase/phosphatase activities and cell signaling reconstruction. A "MetScore" was determined to assign the metformin relevance of each P-site, revealing new and robust phosphorylation nodes and pathways in metformin signaling. Finally, we leveraged the metformin P-site signature to identify pharmacodynamic interactions and confirmed a number of candidate metformin-interacting drugs, including navitoclax, a BCL-2/BCL-xL inhibitor. Together, we provide a comprehensive phosphoproteomic resource to explore the metformin-induced cell signaling for potential cancer therapeutics. This resource can be accessed at https://yslproteomics.shinyapps.io/Metformin/.


Antineoplastic Agents , Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
6.
bioRxiv ; 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36711903

The majority of cellular proteins interact with at least one partner or assemble into molecular-complexes to exert their function. This network of protein-protein interactions (PPIs) and the composition of macromolecular machines differ between cell types and physiological conditions. Therefore, characterizing PPI networks and their dynamic changes is vital for discovering novel biological functions and underlying mechanisms of cellular processes. However, producing an in-depth, global snapshot of PPIs from a given specimen requires measuring tens to thousands of LC-MS/MS runs. Consequently, while recent works made seminal contributions by mapping PPIs at great depth, almost all focused on just 1-2 conditions, generating comprehensive but mostly static PPI networks. In this study we report the development of SEC-TMT, a method that enables identifying and measuring PPIs in a quantitative manner from only 4-8 LC-MS/MS runs per biological sample. This was accomplished by incorporating tandem mass tag (TMT) multiplexing with a size exclusion chromatography mass spectrometry (SEC-MS) work-flow. SEC-TMT reduces measurement time by an order of magnitude while maintaining resolution and coverage of thousands of cellular interactions, equivalent to the gold standard in the field. We show that SEC-TMT provides benefits for conducting differential analyses to measure changes in the PPI network between conditions. This development makes it feasible to study dynamic systems at scale and holds the potential to drive more rapid discoveries of PPI impact on cellular processes.

7.
Nat Commun ; 13(1): 3944, 2022 07 08.
Article En | MEDLINE | ID: mdl-35803928

The dia-PASEF technology uses ion mobility separation to reduce signal interferences and increase sensitivity in proteomic experiments. Here we present a two-dimensional peak-picking algorithm and generation of optimized spectral libraries, as well as take advantage of neural network-based processing of dia-PASEF data. Our computational platform boosts proteomic depth by up to 83% compared to previous work, and is specifically beneficial for fast proteomic experiments and those with low sample amounts. It quantifies over 5300 proteins in single injections recorded at 200 samples per day throughput using Evosep One chromatography system on a timsTOF Pro mass spectrometer and almost 9000 proteins in single injections recorded with a 93-min nanoflow gradient on timsTOF Pro 2, from 200 ng of HeLa peptides. A user-friendly implementation is provided through the incorporation of the algorithms in the DIA-NN software and by the FragPipe workflow for spectral library generation.


Proteome , Proteomics , Data Analysis , Humans , Mass Spectrometry/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods
8.
Nat Commun ; 12(1): 4882, 2021 08 12.
Article En | MEDLINE | ID: mdl-34385466

Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.


Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Interleukins/immunology , Lymphocyte Activation/immunology , A549 Cells , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Gene Expression Regulation/immunology , Genotype , Hep G2 Cells , Hepacivirus/genetics , Hepacivirus/physiology , Host-Pathogen Interactions/immunology , Humans , Interleukins/genetics , Interleukins/metabolism
9.
J Proteome Res ; 20(7): 3758-3766, 2021 07 02.
Article En | MEDLINE | ID: mdl-34153189

Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-scale data sets. Here we present DIAproteomics, a multifunctional, automated, high-throughput pipeline implemented in the Nextflow workflow management system that allows one to easily process proteomics and peptidomics DIA data sets on diverse compute infrastructures. The central components are well-established tools such as the OpenSwathWorkflow for the DIA spectral library search and PyProphet for the false discovery rate assessment. In addition, it provides options to generate spectral libraries from existing DDA data and to carry out the retention time and chromatogram alignment. The output includes annotated tables and diagnostic visualizations from the statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. DIAproteomics is well documented open-source software and is available under a permissive license to the scientific community at https://www.openms.de/diaproteomics/.


Data Analysis , Proteomics , Mass Spectrometry , Reproducibility of Results , Software
10.
Nat Commun ; 12(1): 3810, 2021 06 21.
Article En | MEDLINE | ID: mdl-34155216

To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.


Protein Isoforms/analysis , Proteomics/methods , Algorithms , Animals , Benchmarking , Humans , Mice , Peptides/analysis , Peptides/metabolism , Protein Isoforms/metabolism , Proteomics/standards , Tandem Mass Spectrometry , Workflow
11.
Dev Cell ; 56(1): 111-124.e6, 2021 01 11.
Article En | MEDLINE | ID: mdl-33238149

To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectrometry-based method, a pulse labeling approach using stable isotope-labeled amino acids in cells (pSILAC), phosphoproteomics, and a unique peptide-level matching strategy, our DeltaSILAC profiling revealed a global, unexpected delaying effect of many phosphosites on protein turnover. We further found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness, enriched in Cyclin-dependent kinase substrates, and evolutionarily conserved, whereas the glutamic acids surrounding phosphosites significantly delay protein turnover. Our method represents a generalizable approach and provides a rich resource for prioritizing the effects of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology.


Isotope Labeling/methods , Mass Spectrometry/methods , Phosphoproteins/metabolism , Proteolysis , Proteome/metabolism , Proteomics/methods , Amino Acid Sequence , Cell Cycle/physiology , Cell Line, Tumor , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Glutamates/metabolism , Humans , Peptides/metabolism , Peroxiredoxin VI/chemistry , Peroxiredoxin VI/metabolism , Phosphoproteins/chemistry , Phosphorylation , Proteome/genetics , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , Signal Transduction/genetics
12.
Cell Syst ; 11(6): 589-607.e8, 2020 12 16.
Article En | MEDLINE | ID: mdl-33333029

Protein-protein interactions (PPIs) play critical functional and regulatory roles in cellular processes. They are essential for macromolecular complex formation, which in turn constitutes the basis for protein interaction networks that determine the functional state of a cell. We and others have previously shown that chromatographic fractionation of native protein complexes in combination with bottom-up mass spectrometric analysis of consecutive fractions supports the multiplexed characterization and detection of state-specific changes of protein complexes. In this study, we extend co-fractionation and mass spectrometric data analysis to perform quantitative, network-based studies of proteome organization, via the size-exclusion chromatography algorithmic toolkit (SECAT). This framework explicitly accounts for the dynamic nature and rewiring of protein complexes across multiple cell states and samples, thus, elucidating molecular mechanisms that are differentially implemented across different experimental settings. Systematic analysis of multiple datasets shows that SECAT represents a highly scalable and effective methodology to assess condition/state-specific protein-network state. A record of this paper's transparent peer review process is included in the Supplemental Information.


Mass Spectrometry/methods , Protein Interaction Maps/immunology , Proteomics/methods , Humans
13.
J Proteome Res ; 19(10): 4163-4178, 2020 10 02.
Article En | MEDLINE | ID: mdl-32966080

Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass spectrometry, leveraging small precursor mass windows to physically separate modified peptidoforms from each other during MS2 acquisition. We utilize a lysine and arginine PTM-enriched peptide assay library and site localization algorithm to simultaneously localize and quantify seven PTMs including mono-, di-, and trimethylation, acetylation, and succinylation in addition to total protein quantification in a single MS run without the need to enrich experimental samples. To evaluate biological relevance, this method was applied to liver lysate from differentially methylated nonalcoholic steatohepatitis (NASH) mouse models. We report that altered methylation and acetylation together with total protein changes drive the novel hypothesis of a regulatory function of PTMs in protein synthesis and mRNA stability in NASH.


Liver Diseases , Lysine , Acetylation , Animals , Arginine , Lysine/metabolism , Mice , Protein Processing, Post-Translational , Proteomics
14.
Mol Cell ; 79(3): 504-520.e9, 2020 08 06.
Article En | MEDLINE | ID: mdl-32707033

Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.


Gene Regulatory Networks , Genetic Diseases, Inborn/genetics , Neoplasms/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Computational Biology/methods , Datasets as Topic , Gene Expression Regulation , Gene Ontology , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/pathology , Humans , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Muscular Dystrophies/enzymology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Neoplasms/enzymology , Neoplasms/pathology , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Interaction Mapping/methods , Protein Kinases/chemistry , Protein Kinases/classification , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Signal Transduction
15.
Nat Protoc ; 15(8): 2341-2386, 2020 08.
Article En | MEDLINE | ID: mdl-32690956

Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translational biology. However, detection and quantification of protein complexes on a proteome-wide scale is technically challenging. We have recently extended the targeted proteomics rationale to the level of native protein complex analysis (complex-centric proteome profiling). The complex-centric workflow described herein consists of size exclusion chromatography (SEC) to fractionate native protein complexes, data-independent acquisition mass spectrometry to precisely quantify the proteins in each SEC fraction based on a set of proteotypic peptides and targeted, complex-centric analysis where prior information from generic protein interaction maps is used to detect and quantify protein complexes with high selectivity and statistical error control via the computational framework CCprofiler (https://github.com/CCprofiler/CCprofiler). Complex-centric proteome profiling captures most proteins in complex-assembled state and reveals their organization into hundreds of complexes and complex variants observable in a given cellular state. The protocol is applicable to cultured cells and can potentially also be adapted to primary tissue and does not require any genetic engineering of the respective sample sources. At present, it requires ~8 d of wet-laboratory work, 15 d of mass spectrometry measurement time and 7 d of computational analysis.


Chromatography, Gel , Mass Spectrometry , Proteins/isolation & purification , Proteins/metabolism , Proteomics/methods , HEK293 Cells , Humans
16.
Mol Syst Biol ; 16(3): e9170, 2020 03.
Article En | MEDLINE | ID: mdl-32175694

Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post-translational turnover, we devised a strategy combining pulse stable isotope-labeled amino acids in cells (pSILAC), data-independent acquisition mass spectrometry (DIA-MS), and a novel data analysis framework that resolves protein degradation rate on the level of mRNA alternative splicing isoforms and isoform groups. We demonstrated our approach by the genome-wide correlation analysis between mRNA amounts and protein degradation across different strains of HeLa cells that harbor a high grade of gene dosage variation. The dataset revealed that specific biological processes, cellular organelles, spatial compartments of organelles, and individual protein isoforms of the same genes could have distinctive degradation rate. The protein degradation diversity thus dissects the corresponding buffering or concerting protein turnover control across cancer cell lines. The data further indicate that specific mRNA splicing events such as intron retention significantly impact the protein abundance levels. Our findings support the tight association between transcriptome variability and proteostasis and provide a methodological foundation for studying functional protein degradation.


Protein Isoforms/analysis , Proteins/analysis , RNA Isoforms/metabolism , RNA, Messenger/metabolism , Alternative Splicing , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Isotope Labeling/methods , Mass Spectrometry , Protein Isoforms/metabolism , Proteins/metabolism , Proteolysis , Proteomics/methods , RNA Isoforms/genetics , RNA, Messenger/genetics , Workflow
18.
Cell Syst ; 10(2): 133-155.e6, 2020 02 26.
Article En | MEDLINE | ID: mdl-32027860

Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins. In proteomic studies, these have been treated as independent entities, disregarding their higher-level organization into complexes that affects their activity and/or function and is thus of great interest for biological research. Here, we describe the implementation of an integrated technique to quantify cell-state-specific changes in the physical arrangement of protein complexes concurrently for thousands of proteins and hundreds of complexes. Applying this technique to a comparison of human cells in interphase and mitosis, we provide a systematic overview of mitotic proteome reorganization. The results recall key hallmarks of mitotic complex remodeling and suggest a model of nuclear pore complex disassembly, which we validate by orthogonal methods. To support the interpretation of quantitative SEC-SWATH-MS datasets, we extend the software CCprofiler and provide an interactive exploration tool, SECexplorer-cc.


Mitosis/genetics , Proteomics/methods , Tandem Mass Spectrometry/methods , Humans
19.
J Am Soc Mass Spectrom ; 30(8): 1396-1405, 2019 Aug.
Article En | MEDLINE | ID: mdl-31147889

Due to the technical advances of mass spectrometers, particularly increased scanning speed and higher MS/MS resolution, the use of data-independent acquisition mass spectrometry (DIA-MS) became more popular, which enables high reproducibility in both proteomic identification and quantification. The current DIA-MS methods normally cover a wide mass range, with the aim to target and identify as many peptides and proteins as possible and therefore frequently generate MS/MS spectra of high complexity. In this report, we assessed the performance and benefits of using small windows with, e.g., 5-m/z width across the peptide elution time. We further devised a new DIA method named RTwinDIA that schedules the small isolation windows in different retention time blocks, taking advantage of the fact that larger peptides are normally eluting later in reversed phase chromatography. We assessed the direct proteomic identification by using shotgun database searching tools such as MaxQuant and pFind, and also Spectronaut with an external comprehensive spectral library of human proteins. We conclude that algorithms like pFind have potential in directly analyzing DIA data acquired with small windows, and that the instrumental time and DIA cycle time, if prioritized to be spent on small windows rather than on covering a broad mass range by large windows, will improve the direct proteome coverage for new biological samples and increase the quantitative precision. These results further provide perspectives for the future convergence between DDA and DIA on faster MS analyzers.


Proteins/analysis , Proteomics/methods , Cell Line, Tumor , Chromatography, Reverse-Phase , Humans , Mass Spectrometry/methods , Peptides/analysis , Software
20.
Mol Syst Biol ; 15(1): e8438, 2019 01 14.
Article En | MEDLINE | ID: mdl-30642884

Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper, we describe an integrated experimental and computational technique to quantify hundreds of protein complexes in a single operation. The method consists of size exclusion chromatography (SEC) to fractionate native protein complexes, SWATH/DIA mass spectrometry to precisely quantify the proteins in each SEC fraction, and the computational framework CCprofiler to detect and quantify protein complexes by error-controlled, complex-centric analysis using prior information from generic protein interaction maps. Our analysis of the HEK293 cell line proteome delineates 462 complexes composed of 2,127 protein subunits. The technique identifies novel sub-complexes and assembly intermediates of central regulatory complexes while assessing the quantitative subunit distribution across them. We make the toolset CCprofiler freely accessible and provide a web platform, SECexplorer, for custom exploration of the HEK293 proteome modularity.


Chromatography, Gel/methods , Mass Spectrometry/methods , Multiprotein Complexes/analysis , Proteome/analysis , Proteomics/methods , Algorithms , Computational Biology/methods , HEK293 Cells , Humans , Multiprotein Complexes/metabolism , Protein Interaction Maps , Proteome/metabolism
...