Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 40(5): 387-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336520

RESUMEN

The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.


Asunto(s)
Organismos Acuáticos , Edición Génica , Animales , Organismos Acuáticos/genética , Genoma/genética , Relojes Biológicos/genética , Ritmo Circadiano/genética
2.
Brief Funct Genomics ; 22(6): 525-532, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37981860

RESUMEN

Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/genética , Proteoma/genética , Edición de ARN , ARN , Encéfalo
3.
Proc Natl Acad Sci U S A ; 120(41): e2301207120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782798

RESUMEN

Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.


Asunto(s)
Membrana Dobles de Lípidos , Octopodiformes , ATPasa Intercambiadora de Sodio-Potasio , Aclimatación/genética , Aminoácidos , Regiones Antárticas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Octopodiformes/enzimología , Animales
4.
Front Genome Ed ; 5: 1181713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342458

RESUMEN

The coleoid cephalopods display unusually extensive mRNA recoding by adenosine deamination, yet the underlying mechanisms are not well understood. Because the adenosine deaminases that act on RNA (ADAR) enzymes catalyze this form of RNA editing, the structure and function of the cephalopod orthologs may provide clues. Recent genome sequencing projects have provided blueprints for the full complement of coleoid cephalopod ADARs. Previous results from our laboratory have shown that squid express an ADAR2 homolog, with two splice variants named sqADAR2a and sqADAR2b and that these messages are extensively edited. Based on octopus and squid genomes, transcriptomes, and cDNA cloning, we discovered that two additional ADAR homologs are expressed in coleoids. The first is orthologous to vertebrate ADAR1. Unlike other ADAR1s, however, it contains a novel N-terminal domain of 641 aa that is predicted to be disordered, contains 67 phosphorylation motifs, and has an amino acid composition that is unusually high in serines and basic amino acids. mRNAs encoding sqADAR1 are themselves extensively edited. A third ADAR-like enzyme, sqADAR/D-like, which is not orthologous to any of the vertebrate isoforms, is also present. Messages encoding sqADAR/D-like are not edited. Studies using recombinant sqADARs suggest that only sqADAR1 and sqADAR2 are active adenosine deaminases, both on perfect duplex dsRNA and on a squid potassium channel mRNA substrate known to be edited in vivo. sqADAR/D-like shows no activity on these substrates. Overall, these results reveal some unique features in sqADARs that may contribute to the high-level RNA recoding observed in cephalopods.

5.
Curr Biol ; 33(13): 2774-2783.e5, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343558

RESUMEN

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.


Asunto(s)
Sistemas CRISPR-Cas , Decapodiformes , Animales , Decapodiformes/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , Genoma
6.
Cell ; 186(12): 2544-2555.e13, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295402

RESUMEN

In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.


Asunto(s)
Octopodiformes , Proteoma , Animales , Proteoma/metabolismo , Octopodiformes/genética , Edición de ARN , Temperatura , Sistema Nervioso/metabolismo , Adenosina Desaminasa/metabolismo , ARN/metabolismo
7.
Integr Comp Biol ; 63(6): 1226-1239, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37370232

RESUMEN

Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.


Asunto(s)
Cefalópodos , Animales , Genómica/métodos , Genoma , Perfilación de la Expresión Génica , Encéfalo
8.
PLoS Negl Trop Dis ; 17(6): e0011249, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352363

RESUMEN

The neglected tropical disease schistosomiasis impacts over 700 million people globally. Schistosoma mansoni, the trematode parasite that causes the most common type of schistosomiasis, requires planorbid pond snails of the genus Biomphalaria to support its larval development and transformation to the cercarial form that can infect humans. A greater understanding of neural signaling systems that are specific to the Biomphalaria intermediate host could lead to novel strategies for parasite or snail control. This study examined a Biomphalaria glabrata neural channel that is gated by the neuropeptide FMRF-NH2. The Biomphalaria glabrata FMRF-NH2 gated sodium channel (Bgl-FaNaC) amino acid sequence was highly conserved with FaNaCs found in related gastropods, especially the planorbid Planorbella trivolvis (91% sequence identity). In common with the P. trivolvis FaNaC, the B. glabrata channel exhibited a low affinity (EC50: 3 x 10-4 M) and high specificity for the FMRF-NH2 agonist. Its expression in the central nervous system, detected with immunohistochemistry and in situ hybridization, was widespread, with the protein localized mainly to neuronal fibers and the mRNA confined to cell bodies. Colocalization of the Bgl-FaNaC message with its FMRF-NH2 agonist precursor occurred in some neurons associated with male mating behavior. At the mRNA level, Bgl-FaNaC expression was decreased at 20 and 35 days post infection (dpi) by S. mansoni. Increased expression of the transcript encoding the FMRF-NH2 agonist at 35 dpi was proposed to reflect a compensatory response to decreased receptor levels. Altered FMRF-NH2 signaling could be vital for parasite proliferation in its intermediate host and may therefore present innovative opportunities for snail control.


Asunto(s)
Biomphalaria , Esquistosomiasis mansoni , Esquistosomiasis , Trematodos , Animales , Masculino , Humanos , Schistosoma mansoni/fisiología , Biomphalaria/parasitología , FMRFamida , Esquistosomiasis/parasitología , Sistema Nervioso Central , Esquistosomiasis mansoni/parasitología , Interacciones Huésped-Parásitos/fisiología
9.
PLoS Genet ; 19(3): e1010661, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36877730

RESUMEN

The most abundant form of RNA editing in metazoa is the deamination of adenosines into inosines (A-to-I), catalyzed by ADAR enzymes. Inosines are read as guanosines by the translation machinery, and thus A-to-I may lead to protein recoding. The ability of ADARs to recode at the mRNA level makes them attractive therapeutic tools. Several approaches for Site-Directed RNA Editing (SDRE) are currently under development. A major challenge in this field is achieving high on-target editing efficiency, and thus it is of much interest to identify highly potent ADARs. To address this, we used the baker yeast Saccharomyces cerevisiae as an editing-naïve system. We exogenously expressed a range of heterologous ADARs and identified the hummingbird and primarily mallard-duck ADARs, which evolved at 40-42°C, as two exceptionally potent editors. ADARs bind to double-stranded RNA structures (dsRNAs), which in turn are temperature sensitive. Our results indicate that species evolved to live with higher core body temperatures have developed ADAR enzymes that target weaker dsRNA structures and would therefore be more effective than other ADARs. Further studies may use this approach to isolate additional ADARs with an editing profile of choice to meet specific requirements, thus broadening the applicability of SDRE.


Asunto(s)
Adenosina Desaminasa , Temperatura Corporal , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Bicatenario/genética , ARN Mensajero/genética , Inosina/genética , Inosina/metabolismo
10.
Curr Biol ; 33(10): 1867-1882.e5, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36977416

RESUMEN

Organisms living in the intertidal zone are exposed to a particularly challenging environment. In addition to daily changes in light intensity and seasonal changes in photoperiod and weather patterns, they experience dramatic oscillations in environmental conditions due to the tides. To anticipate tides, and thus optimize their behavior and physiology, animals occupying intertidal ecological niches have acquired circatidal clocks. Although the existence of these clocks has long been known, their underlying molecular components have proven difficult to identify, in large part because of the lack of an intertidal model organism amenable to genetic manipulation. In particular, the relationship between the circatidal and circadian molecular clocks, and the possibility of shared genetic components, has been a long-standing question. Here, we introduce the genetically tractable crustacean Parhyale hawaiensis as a system for the study of circatidal rhythms. First, we show that P. hawaiensis exhibits robust 12.4-h rhythms of locomotion that can be entrained to an artificial tidal regimen and are temperature compensated. Using CRISPR-Cas9 genome editing, we then demonstrate that the core circadian clock gene Bmal1 is required for circatidal rhythms. Our results thus demonstrate that Bmal1 is a molecular link between circatidal and circadian clocks and establish P. hawaiensis as a powerful system to study the molecular mechanisms underlying circatidal rhythms and their entrainment.


Asunto(s)
Anfípodos , Relojes Circadianos , Animales , Ritmo Circadiano/fisiología , Relojes Circadianos/genética , Fotoperiodo , Locomoción
11.
Annu Rev Anim Biosci ; 11: 57-75, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790891

RESUMEN

The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/genética , Proteoma/genética , Edición de ARN , Transcriptoma
12.
Nucleic Acids Res ; 51(7): e41, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840708

RESUMEN

A major challenge confronting the clinical application of site-directed RNA editing (SDRE) is the design of small guide RNAs (gRNAs) that can drive efficient editing. Although many gRNA designs have effectively recruited endogenous Adenosine Deaminases that Act on RNA (ADARs), most of them exceed the size of currently FDA-approved antisense oligos. We developed an unbiased in vitro selection assay to identify short gRNAs that promote superior RNA editing of a premature termination codon. The selection assay relies on hairpin substrates in which the target sequence is linked to partially randomized gRNAs in the same molecule, so that gRNA sequences that promote editing can be identified by sequencing. These RNA substrates were incubated in vitro with ADAR2 and the edited products were selected using amplification refractory mutation system PCR and used to regenerate the substrates for a new round of selection. After nine repetitions, hairpins which drove superior editing were identified. When gRNAs of these hairpins were delivered in trans, eight of the top ten short gRNAs drove superior editing both in vitro and in cellula. These results show that efficient small gRNAs can be selected using our approach, an important advancement for the clinical application of SDRE.


Asunto(s)
Edición de ARN , ARN Guía de Sistemas CRISPR-Cas , Secuencia de Bases , Codón sin Sentido , Mutación , Edición de ARN/genética
13.
RNA ; 29(4): 498-505, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669890

RESUMEN

Adenosine deamination by the ADAR family of enzymes is a natural process that edits genetic information as it passes through messenger RNA. Adenosine is converted to inosine in mRNAs, and this base is interpreted as guanosine during translation. Realizing the potential of this activity for therapeutics, a number of researchers have developed systems that redirect ADAR activity to new targets, ones that are not normally edited. These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-Cas or RNAi. To date, SDRE has been used mostly to try and correct genetic mutations. Here we argue that these applications are not ideal SDRE, mostly because RNA edits are transient and genetic mutations are not. Instead, we suggest that SDRE could be used to tune cell physiology to achieve temporary outcomes that are therapeutically advantageous, particularly in the nervous system. These include manipulating excitability in nociceptive neural circuits, abolishing specific phosphorylation events to reduce protein aggregation related to neurodegeneration or reduce the glial scarring that inhibits nerve regeneration, or enhancing G protein-coupled receptor signaling to increase nerve proliferation for the treatment of sensory disorders like blindness and deafness.


Asunto(s)
Adenosina Desaminasa , Técnicas Genéticas , Edición de ARN , Humanos , Animales , ARN Mensajero/química
14.
Nat Commun ; 13(1): 2427, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508532

RESUMEN

Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/genética , Decapodiformes/genética , Genoma/genética , ARN Mensajero/genética , Transcriptoma/genética
15.
Methods Enzymol ; 658: 335-358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34517953

RESUMEN

Site-directed RNA editing (SDRE) exploits the enzymatic activity of Adenosine Deaminases Acting on RNAs (ADAR) to program changes in genetic information as it passes through RNA. ADARs convert adenosine (A) to inosine (I) through a hydrolytic deamination and since I can be read as guanosine (G) during translation, this change can regulate gene function and correct G→A genetic mutations. In SDRE, ADARs are redirected to convert user-defined A's to I's. SDRE also has certain advantages over genome editing because the changes in RNA are reversible and thus safer. In addition, ADARs are endogenously expressed in humans and therefore unlikely to provoke immunological complications when administered. Recently, a variety of systems for SDRE have been developed. Some rely on harnessing endogenously expressed ADARs and other deliver engineered versions of ADAR's catalytic domain. All systems are currently under refinement, and there are still challenges associated with raising their efficiency and specificity to levels that are adequate for therapeutics. This chapter provides a detailed protocol for in vitro and in cellula editing assays using the λNDD-BoxB system, one of the first systems developed for SDRE. The λNDD-BoxB system relies on gRNAs that are linked to the catalytic domain of human ADAR2 through a small RNA binding protein-RNA stem/loop interaction. We provide step-by-step protocols for (a) the construction of guide RNAs and editing enzyme plasmids, and (b) their use in vitro and in cellula for editing assays using a fluorescent protein-based reporter system containing a premature termination codon that can be corrected by editing.


Asunto(s)
Adenosina Desaminasa , Edición de ARN , Adenosina Desaminasa/genética , Humanos , Inosina , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041754

RESUMEN

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Asunto(s)
FMRFamida/genética , Neuropéptidos/genética , Esquistosomiasis mansoni/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Biomphalaria , FMRFamida/análisis , FMRFamida/metabolismo , Neuropéptidos/análisis , Neuropéptidos/metabolismo , Imagen Óptica/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/metabolismo
17.
Mol Biol Evol ; 38(9): 3775-3788, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34022057

RESUMEN

RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.


Asunto(s)
Cefalópodos , Edición de ARN , Animales , Cefalópodos/genética , Codón/genética , Inosina/genética , Proteoma/genética , Edición de ARN/genética
18.
Curr Biol ; 30(17): 3484-3490.e4, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735817

RESUMEN

Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1], ionic gradients across cells [2], voltage-dependent ion channels [3], molecular motors [4-7], and synaptic transmission [8-11]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12, 13]. The second is the sequencing of genomes for several cephalopod species [14-16]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18-20]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.


Asunto(s)
Sistemas CRISPR-Cas , Cromatóforos/fisiología , Decapodiformes/genética , Embrión no Mamífero/metabolismo , Técnicas de Inactivación de Genes , Pigmentación , Triptófano Oxigenasa/antagonistas & inhibidores , Animales , Cromatóforos/citología , Decapodiformes/embriología , Decapodiformes/enzimología , Embrión no Mamífero/citología , Fenotipo , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo
19.
Nucleic Acids Res ; 48(8): 3999-4012, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32201888

RESUMEN

In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.


Asunto(s)
Adenosina Desaminasa/metabolismo , Neuronas/enzimología , Edición de ARN , Adenosina/metabolismo , Animales , Axones/enzimología , Citoplasma/enzimología , Decapodiformes/enzimología , Células HEK293 , Humanos , Inosina/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Sinapsis/enzimología
20.
J Exp Biol ; 223(Pt 3)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31900349

RESUMEN

An important aspect of the performance of many fast muscle fiber types is rapid excitation. Previous research on the cross-striated muscle fibers responsible for the rapid tentacle strike in squid has revealed the specializations responsible for high shortening velocity, but little is known about excitation of these fibers. Conventional whole-cell patch recordings were made from tentacle fibers and the slower obliquely striated muscle fibers of the arms. The fast-contracting tentacle fibers show an approximately 10-fold greater sodium conductance than that of the arm fibers and, unlike the arm fibers, the tentacle muscle fibers produce action potentials. In situ hybridization using an antisense probe to the voltage-dependent sodium channel present in this squid genus shows prominent expression of sodium channel mRNA in tentacle fibers but undetectable expression in arm fibers. Production of action potentials by tentacle muscle fibers and their absence in arm fibers is likely responsible for the previously reported greater twitch-tetanus ratio in the tentacle versus the arm fibers. During the rapid tentacle strike, a few closely spaced action potentials would result in maximal activation of transverse tentacle muscle. Activation of the slower transverse muscle fibers in the arms would require summation of excitatory postsynaptic potentials over a longer time, allowing the precise modulation of force required for supporting slower movements of the arms.


Asunto(s)
Potenciales de Acción/fisiología , Decapodiformes/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Técnicas de Placa-Clamp , Canales de Sodio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA