Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
Mol Cell Biol ; 44(5): 194-208, 2024.
Article En | MEDLINE | ID: mdl-38769646

Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.


Cellular Senescence , Nuclear Proteins , RNA Stability , RNA, Messenger , RNA-Binding Proteins , Repressor Proteins , Humans , Cellular Senescence/drug effects , Cellular Senescence/genetics , RNA Stability/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Etoposide/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Nucleus/metabolism , Cell Line , Muscle Proteins
2.
Nucleic Acids Res ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721764

RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.

3.
Biochem Biophys Res Commun ; 690: 149294, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38011772

Oligomeric enzymes containing multiple active sites are usually considered to perform their catalytic action at higher rates when compared with their monomeric counterparts. This implies, in turn, that the activity performed by different holoenzyme subunits features additivity. Nevertheless, the extent of this additivity occurring in holoenzymes is far from being adequately understood. To tackle this point, we used tetrameric rabbit lactate dehydrogenase (rbLDH) as a model system to assay the reduction of pyruvate catalysed by this enzyme at the expense of ß-NADH under pre-steady-state conditions. In particular, we observed the kinetics of reactions triggered by concentrations of ß-NADH equimolar to 1, 2, 3, or all 4 subunits of the rbLDH holoenzyme, in the presence of an excess of pyruvate. Surprisingly, when the concentration of the limiting reactant exceeded that of a single holoenzyme subunit, we observed a sharp slowdown of the enzyme conformational rearrangements associated to the generation and the release of l-lactate. Furthermore, using a model to interpret the complex kinetics observed under the highest concentration of the limiting reactant, we estimated the diversity of the rates describing the action of the different rbLDH subunits.


L-Lactate Dehydrogenase , NAD , Animals , Rabbits , L-Lactate Dehydrogenase/metabolism , NAD/metabolism , Muscle, Skeletal/metabolism , Pyruvic Acid , Holoenzymes , Kinetics
4.
Proc Natl Acad Sci U S A ; 120(43): e2219801120, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37862381

Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.


Cellular Senescence , Extracellular Vesicles , Humans , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , HeLa Cells , Extracellular Vesicles/metabolism , Aging
5.
J Extracell Biol ; 2(8)2023 Aug.
Article En | MEDLINE | ID: mdl-37744304

Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA1), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs prepared from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.

6.
Nat Aging ; 3(10): 1237-1250, 2023 10.
Article En | MEDLINE | ID: mdl-37667102

Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-ß signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.


Aging , Cellular Senescence , Animals , Mice , Aging/genetics , Cell Survival , Cellular Senescence/genetics , Signal Transduction , TOR Serine-Threonine Kinases , YAP-Signaling Proteins/metabolism , TEA Domain Transcription Factors , Endoplasmic Reticulum Stress/genetics
7.
Elife ; 122023 04 21.
Article En | MEDLINE | ID: mdl-37083495

Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-ß-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.


B-Cell Activating Factor , Cellular Senescence , Humans , Animals , Mice , Cellular Senescence/genetics , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/pharmacology , Secretome , Aging/genetics , Cytokines/metabolism
8.
Sci Rep ; 13(1): 5976, 2023 04 12.
Article En | MEDLINE | ID: mdl-37045870

The Cre-lox system is a versatile and powerful tool used in mouse genetics. It allows spatial and/or temporal control of the deletion of a target gene. The Rosa26-CreERT2 (R26CreERT2) mouse model allows ubiquitous expression of CreERT2. Once activated by tamoxifen, CreERT2 will enter into the nuclei and delete floxed DNA sequences. Here, we show that intraperitoneal injection of tamoxifen in young R26CreERT2 mice leads to morbidity and mortality within 10 days after the first injection, in the absence of a floxed allele. Activation of CreERT2 by tamoxifen led to severe hematological defects, with anemia and a strong disorganization of the bone marrow vascular bed. Cell proliferation was significantly reduced in the bone marrow and the spleen resulting in the depletion of several hematopoietic cells. However, not all cell types or organs were affected to the same extent. We realized that many research groups are not aware of the potential toxicity of Cre recombinases, resulting in misinterpretation of the observed phenotype and in a waste of time and resources. We discuss the necessity to include tamoxifen injected CreERT2 controls lacking a floxed allele in experimental designs and to improve communication about the limitations of Cre-lox mouse models among the scientific community.


Integrases , Tamoxifen , Mice , Animals , Mice, Transgenic , Tamoxifen/toxicity , Disease Models, Animal , Integrases/genetics , Integrases/metabolism
9.
Aging (Albany NY) ; 15(8): 2824-2851, 2023 04 19.
Article En | MEDLINE | ID: mdl-37086265

Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells actively secrete proinflammatory and matrix-remodeling proteins, their accumulation in tissues of older persons has been linked to many diseases of aging. Despite intense interest in identifying robust markers of senescence, the highly heterogeneous and dynamic nature of the senescent phenotype has made this task difficult. Here, we set out to comprehensively analyze the senescent transcriptome of human diploid fibroblasts at the individual-cell scale by performing single-cell RNA-sequencing analysis through two approaches. First, we characterized the different cell states in cultures undergoing senescence triggered by different stresses, and found distinct cell subpopulations that expressed mRNAs encoding proteins with roles in growth arrest, survival, and the secretory phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed etoposide-induced senescence; by tracking cell transitions across this process, we found two different senescence programs that developed divergently, one in which cells expressed traditional senescence markers such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper understanding of the transcriptomes during the progression of different senescent cell phenotypes will help develop more effective interventions directed at this detrimental cell population.


Cellular Senescence , Transcriptome , Humans , Aged , Aged, 80 and over , Cellular Senescence/genetics , Aging/genetics , Phenotype
11.
Pharmaceutics ; 15(2)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36839972

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is also expressed in neurons, skin melanocytes, and peripheral nerve fibers. Immunotherapy with monoclonal anti-GD2 antibodies has a proven efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. However, the strong neuro-toxicity associated with anti-GD2 antibodies administration has hindered, until now, the possibility for dose-escalation and protracted use, thus restraining their therapeutic potential. Strategies to increase the efficacy of anti-GD2 antibodies are actively sought, with the aim to enable chronic treatments that could eradicate minimal residual disease and subsequent relapses, often occurring after treatment. Here, we report that Nanofenretinide and Nanospermidine improved the expression of GD2 in neuroblastoma cells (CHP-134) and provided different effects in combination with the anti-GD2 antibody naxitamab. In particular, Nanofenretinide significantly increased the cytotoxic effect of naxitamab while Nanospermidine inhibited cell motility at extents proportional to naxitamab concentration. In neuroblastoma cells characterized by a low and heterogeneous basal expression of GD2, such as SH-SY5Y, which may represent the cell heterogeneity in tumors after chemotherapy, both Nanofenretinide and Nanospermidine increased GD2 expression in approximately 50% of cells, thus shifting the tumor population towards improved sensitivity to anti-GD2 antibodies.

13.
Nat Commun ; 13(1): 6228, 2022 10 20.
Article En | MEDLINE | ID: mdl-36266274

Cellular senescence is characterized by cell cycle arrest, resistance to apoptosis, and a senescence-associated secretory phenotype (SASP) whereby cells secrete pro-inflammatory and tissue-remodeling factors. Given that the SASP exacerbates age-associated pathologies, some aging interventions aim at selectively eliminating senescent cells. In this study, a drug library screen uncovered TrkB (NTRK2) inhibitors capable of triggering apoptosis of several senescent, but not proliferating, human cells. Senescent cells expressed high levels of TrkB, which supported senescent cell viability, and secreted the TrkB ligand BDNF. The reduced viability of senescent cells after ablating BDNF signaling suggested an autocrine function for TrkB and BDNF, which activated ERK5 and elevated BCL2L2 levels, favoring senescent cell survival. Treatment with TrkB inhibitors reduced the accumulation of senescent cells in aged mouse organs. We propose that the activation of TrkB by SASP factor BDNF promotes cell survival and could be exploited therapeutically to reduce the senescent-cell burden.


Brain-Derived Neurotrophic Factor , Cellular Senescence , Animals , Humans , Mice , Apoptosis , Cell Survival , Cellular Senescence/genetics , Ligands
14.
Antibiotics (Basel) ; 11(8)2022 Aug 02.
Article En | MEDLINE | ID: mdl-36009909

In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol® and Transcutol® P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin.

15.
Front Med Technol ; 4: 909943, 2022.
Article En | MEDLINE | ID: mdl-35782575

Multicellular tumor spheroids are largely exploited in cancer research since they are more predictive than bi-dimensional cell cultures. Nanomedicine would benefit from the integration of this three-dimensional in vitro model in screening protocols. In this brief work, we discuss some of the issues that cancer nanomedicine will need to consider in the switch from bi-dimensional to three-dimensional multicellular tumor spheroid models.

16.
J Pers Med ; 12(6)2022 May 30.
Article En | MEDLINE | ID: mdl-35743689

(1) Background: Glucose metabolism derangements (GMD) and thyroid nodules (TNs) are the most frequent endocrine disorders, and their relationship is still controversial; little evidence is reported regarding sex differences. We aim to evaluate the association between GMDs and TNs according to sex and the sex differences in glucose metabolism and insulin sensitivity (IS). (2) Methods: We evaluated 342 patients (268 females and 74 males) at high GMD risk undergoing an oral glucose tolerance test and a thyroid ultrasound. (3) Results: The TN prevalence was 61% (n = 210), with no significant differences according to sex and GMD classes. The TN presence is significantly associated with age and impaired fasting glucose (IFG) in females. Males and females with normal fasting glucose (NFG) had a significantly lower OR of having TNs than females with IFG. IFG females had a significantly higher predicted probability of having TNs than NFG males and females but not IFG males. Impaired glucose tolerance/Type 2 diabetes mellitus (IGT/T2DM) is significantly associated with age and male sex, while IFG is associated with age. Females had significantly lower HOMA-index values than males. (4) Conclusions: No significant association between IGT/T2DM and TNs according to sex was found. IFG seems to play a role in TN development independently of sex. Further studies are needed to explore the relationship between TNs and GMD to identify subgroups with a higher TN risk.

17.
Molecules ; 27(12)2022 Jun 11.
Article En | MEDLINE | ID: mdl-35744886

Osteosarcoma (OS) is a malignant disease characterized by poor prognosis due to a high incidence of metastasis and chemoresistance. Recently, Licochalcone A (Lic-A) has been reported as a promising agent against OS. Starting from chalcones selected from a wide in-house library, a new series was designed and synthetized. The antitumor activity of the compounds was tested on the MG63 OS cell line through the innovative Quantitative Phase Imaging technique and MTT assay. To further investigate the biological profile of active derivatives, cell cycle progression and apoptosis induction were evaluated. An earlier and more consistent arrest in the G2-M phase with respect to Lic-A was observed. Moreover, apoptosis was assessed by Annexin V staining as well as by the detection of typical morphological features of apoptotic cells. Among the selected compounds, 1e, 1q, and 1r proved to be the most promising antitumor molecules. This study pointed out that an integrated methodological approach may constitute a valuable platform for the rapid screening of large series of compounds.


Antineoplastic Agents , Bone Neoplasms , Chalcone , Chalcones , Osteosarcoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Chalcone/pharmacology , Chalcones/pharmacology , Chalcones/therapeutic use , Humans , Osteosarcoma/pathology
18.
Pharmaceutics ; 14(6)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35745787

A new strategy to cause cell death in tumors might be the increase of intracellular polyamines at concentrations above their physiological values to trigger the production of oxidation metabolites at levels exceeding cell tolerance. To test this hypothesis, we prepared nanospermidine as a carrier for spermidine penetration into the cells, able to escape the polyamine transport system that strictly regulates intracellular polyamine levels. Nanospermidine was prepared by spermidine encapsulation in nanomicelles and was characterized by size, zeta potential, loading, dimensional stability to dilution, and stability to spermidine leakage. Antitumor activity, ROS production, and cell penetration ability were evaluated in vitro in two neuroblastoma cell lines (NLF and BR6). Nanospermidine was tested as a single agent and in combination with nanofenretinide. Free spermidine was also tested as a comparison. The results indicated that the nanomicelles successfully transported spermidine into the cells inducing cell death in a concentration range (150-200 µM) tenfold lower than that required to provide similar cytotoxicity with free spermidine (1500-2000 µM). Nanofenretinide provided a cytostatic effect in combination with the lowest nanospermidine concentrations evaluated and slightly improved nanospermidine cytotoxicity at the highest concentrations. These data suggest that nanospermidine has the potential to become a new approach in cancer treatment. At the cellular level, in fact, it exploits polyamine catabolism by means of biocompatible doses of spermidine and, in vivo settings, it can exploit the selective accumulation of nanomedicines at the tumor site. Nanofenretinide combination further improves its efficacy. Furthermore, the proven ability of spermidine to activate macrophages and lymphocytes suggests that nanospermidine could inhibit immunosuppression in the tumor environment.

19.
Sci Adv ; 8(14): eabm0756, 2022 04 08.
Article En | MEDLINE | ID: mdl-35394839

Cells responding to DNA damage implement complex adaptive programs that often culminate in one of two distinct outcomes: apoptosis or senescence. To systematically identify factors driving each response, we analyzed human IMR-90 fibroblasts exposed to increasing doses of the genotoxin etoposide and identified SRC as a key kinase contributing early to this dichotomous decision. SRC was activated by low but not high levels of etoposide. With low DNA damage, SRC-mediated activation of p38 critically promoted expression of cell survival and senescence proteins, while SRC-mediated repression of p53 prevented a rise in proapoptotic proteins. With high DNA damage, failure to activate SRC led to elevation of p53, inhibition of p38, and apoptosis. In mice exposed to DNA damage, pharmacologic inhibition of SRC prevented the accumulation of senescent cells in tissues. We propose that inhibiting SRC could be exploited to favor apoptosis over senescence in tissues to improve health outcomes.


Apoptosis , Cellular Senescence , Tumor Suppressor Protein p53 , src-Family Kinases , Animals , DNA Damage , Etoposide/pharmacology , Fibroblasts/cytology , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , src-Family Kinases/metabolism
20.
Front Aging Neurosci ; 14: 848991, 2022.
Article En | MEDLINE | ID: mdl-35401151

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials.

...