Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Microbiol Spectr ; 12(3): e0499822, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38334387

Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.


COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , Mesocricetus , Nanovaccines , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
2.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Article En | MEDLINE | ID: mdl-37107231

Selenoprotein W (Selenow) is a ~9 kDa selenoprotein suggested to play a beneficial role in resolving inflammation. However, the underlying mechanisms are poorly understood. SELENOW expression in the human GI tract using ScRNAseq Gut Cell Atlas and Gene Expression Omnibus (GEO) databases revealed its expression in the small intestine and colonic epithelial, endothelial, mesenchymal, and stem cells and correlated with a protective effect in ulcerative colitis patients. Selenow KO mice treated with 4% dextran sodium sulfate (DSS) showed exacerbated acute colitis, with greater weight loss, shorter colons, and increased fecal occult blood compared to the WT counterparts. Selenow KO mice expressed higher colonic Tnfα, increased Tnfα+ macrophages in the colonic lamina propria, and exhibited loss in epithelial barrier integrity and decreased zonula occludens 1 (Zo-1) expression following DSS treatment. Expression of epithelial cellular adhesion marker (EpCam), yes-associated protein 1 (Yap1), and epidermal growth factor receptor (Egfr) were decreased along with CD24lo cycling epithelial cells in Selenow KO mice. Colonic lysates and organoids confirmed a crosstalk between Egfr and Yap1 that was regulated by Selenow. Overall, our findings suggest Selenow expression is key for efficient resolution of inflammation in experimental colitis that is mediated through the regulation of Egfr and Yap1.

3.
Redox Biol ; 59: 102571, 2023 02.
Article En | MEDLINE | ID: mdl-36516721

Macrophages play a pivotal role in mediating inflammation and subsequent resolution of inflammation. The availability of selenium as a micronutrient and the subsequent biosynthesis of selenoproteins, containing the 21st amino acid selenocysteine (Sec), are important for the physiological functions of macrophages. Selenoproteins regulate the redox tone in macrophages during inflammation, the early onset of which involves oxidative burst of reactive oxygen and nitrogen species. SELENOW is a highly expressed selenoprotein in bone marrow-derived macrophages (BMDMs). Beyond its described general role as a thiol and peroxide reductase and as an interacting partner for 14-3-3 proteins, its cellular functions, particularly in macrophages, remain largely unknown. In this study, we utilized Selenow knock-out (KO) murine bone marrow-derived macrophages (BMDMs) to address the role of SELENOW in inflammation following stimulation with bacterial endotoxin lipopolysaccharide (LPS). RNAseq-based temporal analyses of expression of selenoproteins and the Sec incorporation machinery genes suggested no major differences in the selenium utilization pathway in the Selenow KO BMDMs compared to their wild-type counterparts. However, selective enrichment of oxidative stress-related selenoproteins and increased ROS in Selenow-/- BMDMs indicated anomalies in redox homeostasis associated with hierarchical expression of selenoproteins. Selenow-/- BMDMs also exhibited reduced expression of arginase-1, a key enzyme associated with anti-inflammatory (M2) phenotype necessary to resolve inflammation, along with a significant decrease in efferocytosis of neutrophils that triggers pathways of resolution. Parallel targeted metabolomics analysis also confirmed an impairment in arginine metabolism in Selenow-/- BMDMs. Furthermore, Selenow-/- BMDMs lacked the ability to enhance characteristic glycolytic metabolism during inflammation. Instead, these macrophages atypically relied on oxidative phosphorylation for energy production when glucose was used as an energy source. These findings suggest that SELENOW expression in macrophages may have important implications on cellular redox processes and bioenergetics during inflammation and its resolution.


Selenium , Selenoprotein W , Mice , Animals , Selenoprotein W/genetics , Selenoprotein W/metabolism , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Macrophages/metabolism , Oxidation-Reduction , Inflammation/genetics
4.
Viruses ; 14(7)2022 06 22.
Article En | MEDLINE | ID: mdl-35891340

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/diagnosis , COVID-19/veterinary , Cattle , Chickens , Enzyme-Linked Immunosorbent Assay , Humans , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus , Swine
5.
ACS Photonics ; 9(9): 2963-2972, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-37552735

COVID-19 has cost millions of lives worldwide. The constant mutation of SARS-CoV-2 calls for thorough research to facilitate the development of variant surveillance. In this work, we studied the fundamental properties related to the optical identification of the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, a key component of viral infection. The Raman modes of the SARS-CoV-2 RBD were captured by surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles (AuNPs). The observed Raman enhancement strongly depends on the excitation wavelength as a result of the aggregation of AuNPs. The characteristic Raman spectra of RBDs from SARS-CoV-2 and MERS-CoV were analyzed by principal component analysis that reveals the role of secondary structures in the SERS process, which is corroborated with the thermal stability under laser heating. We can easily distinguish the Raman spectra of two RBDs using machine learning algorithms with accuracy, precision, recall, and F1 scores all over 95%. Our work provides an in-depth understanding of the SARS-CoV-2 RBD and paves the way toward rapid analysis and discrimination of complex proteins of infectious viruses and other biomolecules.

6.
J Clin Invest ; 130(12): 6728-6738, 2020 12 01.
Article En | MEDLINE | ID: mdl-32910806

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Immunoglobulin G , SARS-CoV-2 , Adolescent , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Female , Humans , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Male , Middle Aged , COVID-19 Serotherapy
7.
bioRxiv ; 2020 Jun 09.
Article En | MEDLINE | ID: mdl-32577662

Newly emerged pathogens such as SARS-CoV-2 highlight the urgent need for assays that detect levels of neutralizing antibodies that may be protective. We studied the relationship between anti-spike ectodomain (ECD) and anti-receptor binding domain (RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by two different in vitro assays using convalescent plasma samples obtained from 68 COVID-19 patients, including 13 who donated plasma multiple times. Only 23% (16/68) of donors had been hospitalized. We also studied 16 samples from subjects found to have anti-spike protein IgG during surveillance screening of asymptomatic individuals. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers, and in vitro VN titer. Anti-RBD plasma IgG correlated slightly better than anti-ECD IgG titer with VN titer. The probability of a VN titer ≥160 was 80% or greater with anti-RBD or anti-ECD titers of ≥1:1350. Thirty-seven percent (25/68) of convalescent plasma donors lacked VN titers ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease either VN or IgG titers. Analysis of 2,814 asymptomatic adults found 27 individuals with anti-RBD or anti-ECD IgG titers of ≥1:1350, and evidence of VN ≥1:160. Taken together, we conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titer of ≥1:1350 may provide critical information about protection against COVID-19 disease.

8.
Mol Reprod Dev ; 87(6): 666-679, 2020 06.
Article En | MEDLINE | ID: mdl-32017313

Preferentially expressed antigen in melanoma (PRAME) is cancer/testis antigen and a transcriptional repressor, inhibiting the signaling of retinoic acid through the retinoic acid receptor (RAR) for promoting cell proliferation and preventing cell apoptosis in cancer cells. The role of PRAME in testis and germline is unknown. We report here the generation and characterization of an X-linked Prame conditional knockout (cKO) mouse. Although fertile, the testis size (p < .01) and sperm count (p < .05) of the Prame cKO mice were significantly reduced by 12% at 4 months of age compared with the Prame floxed mice. Histological, immunofluorescence with germ cell-specific markers and terminal deoxynucleotidyl transferase dUTP nick end labeling analyses of testis cross-sections at postnatal day 7 (P7), P14, P21, P35, P120, and P365 indicated a significant increase in apoptotic germ cells at P7 and P14 and an increase in abnormal seminiferous tubules at P21 and P35. Germ cells were gradually lost resulting in two different phenotypes in the Prame cKO testes: Sertoli-cell-only for some of the affected tubules in young mice (at P35) and germ cell arrest at spermatogonia stage for other affected tubules in mature mice. Both phenotypes were a consequence of disruption in RAR signaling pathway by the depletion of Prame at a different time point during the first and subsequent rounds of spermatogenesis. The results suggest that Prame plays a minor, but important role in spermatogenesis and different paralogs in the Prame gene family may be functionally and partially redundant.


Antigens, Neoplasm/genetics , Spermatogenesis/physiology , Spermatozoa/cytology , Animals , Cell Count , Cell Differentiation/genetics , Cells, Cultured , Gene Deletion , Gene Knockdown Techniques/methods , Genes, X-Linked , Germ Cells/cytology , Germ Cells/physiology , Male , Mice , Mice, Knockout , Spermatogenesis/genetics , Spermatozoa/physiology , Testis/cytology
9.
FASEB J ; 33(11): 12838-12852, 2019 11.
Article En | MEDLINE | ID: mdl-31518163

Prostaglandin D2 and its cyclopentenone metabolites [cyclopentenone prostaglandins (CyPGs)], Δ12prostaglandin J2 and 15-deoxy-Δ12,14-prostaglandin J2, act through 2 GPCRs, d-type prostanoid 1 and the chemoattractant receptor homologous molecule expressed on type 2 T-helper cells (Crth2). In addition to its role in allergy and asthma, the role of Crth2 in the resolution of inflammation, to mediate the proresolving functions of endogenous CyPGs, is not well understood. We investigated the regulation of LPS or zymosan-induced inflammatory response by signals from the Crth2 receptor in macrophages that lack Crth2 expression [knockout (KO)]. Increased expression of proinflammatory genes, including Tnf-α, was observed in Crth2 KO cells. Targeting the endogenous biosynthetic pathway of CyPGs with indomethacin or HQL79, which inhibit cyclooxygenases or hematopoietic prostaglandin D synthase, respectively, or use of Crth2 antagonists recapitulated the proinflammatory phenotype as in Crth2 KO cells. Ligand-dependent activation of Crth2 by 13,14-dihydro-15-keto-prostaglandin D2 increased Ca2+ influx through store-operated Ca2+ entry (SOCE) accompanied by the up-regulation of stromal interaction molecule 1 and calcium release-activated calcium modulator 1 expression, suggesting that the proresolution effects of CyPG-dependent activation of SOCE could be mediated by Crth2 during inflammation. Interestingly, Crth2 signaling down-regulated the Ca2+-regulated heat stable protein 1 that stabilizes Tnf-α mRNA via the increased expression of microRNA 155 to dampen inflammatory responses triggered through the TNF-α-NF-κB axis. In summary, these studies present a novel regulatory role for Crth2 during inflammatory response in macrophages.-Diwakar, B. T., Yoast, R., Nettleford, S., Qian, F., Lee, T.-J., Berry, S., Huffnagle, I., Rossi, R. M., Trebak, M., Paulson, R. F., Prabhu, K. S. Crth2 receptor signaling down-regulates lipopolysaccharide-induced NF-κB activation in murine macrophages via changes in intracellular calcium.


Calcium/metabolism , Down-Regulation , Lipopolysaccharides/pharmacology , Macrophages/metabolism , NF-kappa B/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction , Animals , Inflammation/metabolism , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics
10.
Cell Stem Cell ; 12(3): 329-41, 2013 Mar 07.
Article En | MEDLINE | ID: mdl-23333149

Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed "ROS-low"). Second, ROS-low LSCs aberrantly overexpress BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation.


Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Humans , Indoles , Leukemia, Myeloid, Acute/pathology , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Pyrroles/pharmacology , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
11.
Cancer Res ; 72(6): 1557-67, 2012 Mar 15.
Article En | MEDLINE | ID: mdl-22266220

Intrahepatic cholangiocarcinoma (IHCC) is a primary cancer of the liver with an increasing incidence and poor prognosis. Preclinical studies of the etiology and treatment of this disease are hampered by the relatively small number of available IHCC cell lines or genetically faithful animal models. Here we report the development of a genetically engineered mouse model of IHCC that incorporates two of the most common mutations in human IHCC, activating mutations of Kras (Kras(G12D)) and deletion of p53. Tissue-specific activation of Kras(G12D) alone resulted in the development of invasive IHCC with low penetrance and long latency. Latency was shortened by combining Kras(G12D) activation with heterozygous or homozygous deletion of p53 (mean survival of 56 weeks vs. 19 weeks, respectively), which also resulted in widespread local and distant metastasis. Serial analysis showed that the murine models closely recapitulated the multistage histopathologic progression of the human disease, including the development of stroma-rich tumors and the premalignant biliary lesions, intraductal papillary biliary neoplasms (IPBN), and Von Meyenburg complexes (VMC; also known as biliary hamartomas). These findings establish a new genetically and histopathologically faithful model of IHCC and lend experimental support to the hypothesis that IPBN and VMC are precursors to invasive cancers.


Cholangiocarcinoma/genetics , Disease Models, Animal , Liver Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Animals , Bile Duct Neoplasms , Bile Ducts, Intrahepatic , Cholangiocarcinoma/pathology , Disease Progression , Genetic Engineering , Humans , Liver Neoplasms/pathology , Mice , Mutation
12.
Blood ; 116(26): 5983-90, 2010 Dec 23.
Article En | MEDLINE | ID: mdl-20889920

We have previously shown that the plant-derived compound parthenolide (PTL) can impair the survival and leukemogenic activity of primary human acute myeloid leukemia (AML) stem cells. However, despite the activity of this agent, PTL also induces cellular protective responses that likely function to reduce its overall cytotoxicity. Thus, we sought to identify pharmacologic agents that enhance the antileukemic potential of PTL. Toward this goal, we used the gene expression signature of PTL to identify compounds that inhibit cytoprotective responses by performing chemical genomic screening of the Connectivity Map database. This screen identified compounds acting along the phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways. Compared with single agent treatment, exposure of AML cells to the combination of PTL and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors significantly decreased viability of AML cells and reduced tumor burden in vitro and in murine xenotransplantation models. Taken together, our data show that rational drug combinations can be identified using chemical genomic screening strategies and that inhibition of cytoprotective functions can enhance the eradication of primary human AML cells.


Enzyme Inhibitors/pharmacology , Gene Expression Profiling , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Phosphatidylinositol 3-Kinases/metabolism , Sesquiterpenes/pharmacology , TOR Serine-Threonine Kinases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Bone Marrow/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Drug Synergism , Flow Cytometry , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/analogs & derivatives , Sirolimus/pharmacology
13.
Blood ; 112(10): 4184-92, 2008 Nov 15.
Article En | MEDLINE | ID: mdl-18755985

Recent reports have shown that upon expression of appropriate oncogenes, both stem cells and more differentiated progenitor populations can serve as leukemia-initiating cells. These studies suggest that oncogenic mutations subvert normal development and induce reacquisition of stem-like features. However, no study has described how specific mutations influence the ability of differentiating cell subsets to serve as leukemia-initiating cells and if varying such cellular origins confers a functional difference. We have examined the role of the tumor suppressor gene p19(ARF) in a murine model of acute lymphoblastic leukemia and found that loss of p19(ARF) changes the spectrum of cells capable of tumor initiation. With intact p19(ARF), only hematopoietic stem cells (HSCs) can be directly transformed by BCR/ABL expression. In a p19(ARF)-null genetic background expression of the BCR/ABL fusion protein renders functionally defined HSCs, common lymphoid progenitors (CLP), and precursor B-lymphocytes competent to generate leukemia stem cells. Furthermore, we show that leukemias arising from p19(ARF)-null HSC versus pro-B cells differ biologically, including relative response to drug insult. Our observations elucidate a unique mechanism by which heterogeneity arises in tumor populations harboring identical genetic lesions and show that activity of p19(ARF) profoundly influences the nature of tumor-initiating cells during BCR/ABL-mediated leukemogenesis.


Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fusion Proteins, bcr-abl/metabolism , Lymphoid Progenitor Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Lymphoid Progenitor Cells/pathology , Mice , Mice, Transgenic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
14.
Blood ; 111(3): 1644-53, 2008 Feb 01.
Article En | MEDLINE | ID: mdl-18025152

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and the most common type of non-Hodgkin lymphoma. Despite recent advances in treatment, less than 50% of the patients are cured with current multiagent chemotherapy. Abnormal NF-kappaB activity not only contributes to tumor development but also renders cancer cells resistant to chemotherapeutic agents. Identifying and targeting signaling molecules that control NF-kappaB activation in cancer cells may thus yield more effective therapy for DLBCL. Here, we show that while overexpression of protein kinase C-associated kinase (PKK) activates NF-kappaB signaling in DLBCL cells, suppression of PKK expression inhibits NF-kappaB activity in these cells. In addition, we show that NF-kappaB activation induced by B cell-activating factor of tumor necrosis factor family (BAFF) in DLBCL cells requires PKK. Importantly, we show that knockdown of PKK impairs the survival of DLBCL cells in vitro and inhibits tumor growth of xenografted DLBCL cells in mice. Suppression of PKK expression also sensitizes DLBCL cells to treatment with chemotherapeutic agents. Together, these results indicate that PKK plays a pivotal role in the survival of human DLBCL cells and represents a potential target for DLBCL therapy.


Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Mice , Mice, SCID , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
15.
Blood ; 110(13): 4427-35, 2007 Dec 15.
Article En | MEDLINE | ID: mdl-17804695

Leukemia stem cells (LSCs) are thought to play a central role in the pathogenesis of acute leukemia and likely contribute to both disease initiation and relapse. Therefore, identification of agents that target LSCs is an important consideration for the development of new therapies. To this end, we have previously demonstrated that the naturally occurring compound parthenolide (PTL) can induce death of human LSCs in vitro while sparing normal hematopoietic cells. However, PTL has relatively poor pharmacologic properties that limit its potential clinical use. Consequently, we generated a family of PTL analogs designed to improve solubility and bioavailability. These studies identified an analog, dimethylamino-parthenolide (DMAPT), which induces rapid death of primary human LSCs from both myeloid and lymphoid leukemias, and is also highly cytotoxic to bulk leukemic cell populations. Molecular studies indicate the prevalent activities of DMAPT include induction of oxidative stress responses, inhibition of NF-kappaB, and activation of p53. The compound has approximately 70% oral bioavailability, and pharmacologic studies using both mouse xenograft models and spontaneous acute canine leukemias demonstrate in vivo bioactivity as determined by functional assays and multiple biomarkers. Therefore, based on the collective preclinical data, we propose that the novel compound DMAPT has the potential to target human LSCs in vivo.


Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/drug effects , Sesquiterpenes/pharmacology , Animals , Biological Availability , Dogs , Drug Design , Humans , Mice , NF-kappa B/antagonists & inhibitors , Oxidative Stress/drug effects , Sesquiterpenes/pharmacokinetics , Structure-Activity Relationship , Tumor Cells, Cultured , Tumor Suppressor Protein p53/drug effects
16.
Blood ; 110(13): 4436-44, 2007 Dec 15.
Article En | MEDLINE | ID: mdl-17785584

Leukemia is thought to arise from malignant stem cells, which have been described for acute and chronic myeloid leukemia (AML and CML) and for acute lymphoblastic leukemia (ALL). Leukemia stem cells (LSCs) are relatively resistant to current chemotherapy and likely contribute to disease relapse and progression. Consequently, the identification of drugs that can efficiently eradicate LSCs is an important priority. In the present study, we investigated the antileukemia activity of the compound TDZD-8. Analysis of primary AML, blast crisis CML (bcCML), ALL, and chronic lymphoblastic leukemia (CLL) specimens showed rapid induction of cell death upon treatment with TDZD-8. In addition, for myeloid leukemias, cytotoxicity was observed for phenotypically primitive cells, in vitro colony-forming progenitors, and LSCs as defined by xenotransplantation assays. In contrast, no significant toxicity was observed for normal hematopoietic stem and progenitor cells. Notably, cell death was frequently evident within 2 hours or less of TDZD-8 exposure. Cellular and molecular studies indicate that the mechanism by which TDZD-8 induces cell death involves rapid loss of membrane integrity, depletion of free thiols, and inhibition of both the PKC and FLT3 signaling pathways. We conclude that TDZD-8 uses a unique and previously unknown mechanism to rapidly target leukemia cells, including malignant stem and progenitor populations.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thiadiazoles/pharmacology , Animals , Blast Crisis , Cell Death , Cell Membrane , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase C/antagonists & inhibitors , Signal Transduction , Sulfhydryl Compounds , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
17.
Blood ; 110(7): 2578-85, 2007 Oct 01.
Article En | MEDLINE | ID: mdl-17601986

Myeloid leukemia arises from leukemia stem cells (LSCs), which are resistant to standard chemotherapy agents and likely to be a major cause of drug-resistant disease and relapse. To investigate the in vivo properties of LSCs, we developed a mouse model in which the biologic features of human LSCs are closely mimicked. Primitive normal hematopoietic cells were modified to express the BCR/ABL and Nup98/HoxA9 translocation products, and a distinct LSC population, with the aberrant immunophenotype of lineage(-), Kit(+/-), Flt3(+), Sca(+), CD34(+), and CD150(-), was identified. In vivo studies were then performed to assess the response of LSCs to therapeutic insult. Treatment of animals with the ABL kinase inhibitor imatinib mesylate induced specific modulation of blasts and progenitor cells but not stem- cell populations, thereby recapitulating events inferred to occur in human chronic myelogenous leukemia (CML) patients. In addition, challenge of leukemic mice with total body irradiation was selectively toxic to normal hematopoietic stem cells (HSCs), suggesting that LSCs are resistant to apoptosis and/or senescence in vivo. Taken together, the system provides a powerful means by which the in vivo behavior of LSCs versus HSCs can be characterized and candidate treatment regimens can be optimized for maximal specificity toward primitive leukemia cells.


Blast Crisis/genetics , Blast Crisis/pathology , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Animals , Cell Cycle , Cell Lineage , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/radiation effects , Phenotype , Survival Rate
18.
Blood ; 105(11): 4163-9, 2005 Jun 01.
Article En | MEDLINE | ID: mdl-15687234

Recent studies have described malignant stem cells as central to the initiation, growth, and potential relapse of acute and chronic myelogenous leukemia (AML and CML). Because of their important role in pathogenesis, rare and biologically distinct leukemia stem cells (LSCs) represent a critical target for therapeutic intervention. However, to date, very few agents have been shown to directly target the LSC population. The present studies demonstrate that parthenolide (PTL), a naturally occurring small molecule, induces robust apoptosis in primary human AML cells and blast crisis CML (bcCML) cells while sparing normal hematopoietic cells. Furthermore, analysis of progenitor cells using in vitro colony assays, as well as stem cells using the nonobese diabetic/severe combined immunodeficient (NOD/SCID) xenograft model, show that PTL also preferentially targets AML progenitor and stem cell populations. Notably, in comparison to the standard chemotherapy drug cytosine arabinoside (Ara-C), PTL is much more specific to leukemia cells. The molecular mechanism of PTL-mediated apoptosis is strongly associated with inhibition of nuclear factor kappa B (NF-kappaB), proapoptotic activation of p53, and increased reactive oxygen species (ROS). On the basis of these findings, we propose that the activity of PTL triggers LSC-specific apoptosis and as such represents a potentially important new class of drugs for LSC-targeted therapy.


Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/drug effects , Sesquiterpenes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Blast Crisis/drug therapy , Blast Crisis/pathology , Cells, Cultured , Humans , Lactones/pharmacology , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , NF-kappa B/antagonists & inhibitors , Neoplasm Transplantation , Reactive Oxygen Species/metabolism , Transplantation, Heterologous , Tumor Stem Cell Assay , Tumor Suppressor Protein p53/metabolism
19.
Proc Natl Acad Sci U S A ; 99(25): 16220-5, 2002 Dec 10.
Article En | MEDLINE | ID: mdl-12451177

Acute myelogenous leukemia (AML) is typically a disease of stem progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G(0) cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-l-leucyl-l-leucyl-l-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor kappaB (IkappaBalpha) demonstrate that inhibition of nuclear factor kappaB (NF-kappaB) contributes to apoptosis induction. In addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy.


Apoptosis , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid/pathology , Leukocytes/pathology , Neoplastic Stem Cells/pathology , Acute Disease , Alleles , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Graft Survival , Hematopoietic Stem Cells/drug effects , Humans , I-kappa B Proteins/genetics , I-kappa B Proteins/physiology , Idarubicin/pharmacology , Leukocytes/drug effects , Leupeptins/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Multienzyme Complexes/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Proteasome Endopeptidase Complex , Recombinant Fusion Proteins/physiology , Tumor Suppressor Protein p53/physiology
...