Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(5): e202316915, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38059678

RESUMEN

The surface of Carbon Nanodots (CNDs) stands as a rich chemical platform, able to regulate the interactions between particles and external species. Performing selective functionalization of these nanoscale entities is of practical importance, however, it still represents a considerable challenge. In this work, we exploited the organic chemistry toolbox to install target functionalities on the CND surface, while monitoring the chemical changes on the material's outer shell through nuclear magnetic resonance spectroscopy. Following this, we investigated the use of click chemistry to covalently connect CNDs of different nature en-route towards covalent suprastructures with unprecedent molecular control. The different photophysical properties of the connected particles allowed their optical communication in the excited state. This work paves the way for the development of selective and addressable CND building blocks which can act as modular nanoscale synthons that mirror the long-established reactivity of molecular organic synthesis.

2.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37409444

RESUMEN

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

3.
ChemSusChem ; 16(7): e202202399, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36633395

RESUMEN

Amine-rich carbon dots (NCDs) have become promising nano-aminocatalytic platforms in organic synthesis. These nanomaterials can be effectively produced through straightforward bottom-up approaches using inexpensive nitrogen-containing molecular precursors as a starting material. However, to date, there is still a limited understanding of how the molecular features of these precursors affect the catalytic activity of the resulting nanoparticles. This study concerns the production of a new family of NCDs, which use l-arginine and different alkyl diamines as starting materials. The surface amines of all these NCDs were comprehensively characterized, thus allowing us to provide a correlation between the structural features of the nanoparticles and their catalytic performance with a selected amino-catalyzed organic transformation. Importantly, the most active nano-aminocatalysts, namely, NCDs-3, were then used as a basis for the formation of a wide variety of functionalized organic compounds in water under mild reaction conditions.

4.
J Am Chem Soc ; 145(3): 1835-1846, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36608266

RESUMEN

Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 D, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.

5.
ChemSusChem ; 15(18): e202201094, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35789214

RESUMEN

Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.


Asunto(s)
Níquel , Procesos Fotoquímicos , Carbono , Catálisis , Humanos , Ciencia de los Materiales , Níquel/química , Oxidación-Reducción
6.
Org Lett ; 24(16): 2961-2966, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35437017

RESUMEN

A mild light-driven protocol for the direct alkylation of phenols is reported. The process is driven by the photochemical activity of a halogen-bonded complex formed upon complexation of the in situ generated electron-rich phenolate anion with the α-iodosulfone. The reaction proceeds rapidly (10 min) under microfluidic conditions, delivering a wide variety of ortho-alkylated products (27 examples, up to 97% yield, >20:1 regioselectivity, on a gram scale), including densely functionalized bioactive phenol derivatives.


Asunto(s)
Halógenos , Fenoles , Alquilación , Microfluídica , Fenol
7.
Chemistry ; 27(65): 16062-16070, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34339553

RESUMEN

Phenols (I) are extremely relevant chemical functionalities in natural, synthetic and industrial chemistry. Their corresponding electron-rich anions, namely phenolates (I), are characterized by interesting physicochemical properties that can be drastically altered upon light excitation. Specifically, phenolates (I) become strong reducing agents in the excited state and are able to generate reactive radicals from suitable precursors via single-electron transfer processes. Thus, these species can photochemically trigger strategic bond-forming reactions, including their direct aromatic C-H functionalization. Moreover, substituted phenolate anions can act as photocatalysts to enable synthetically useful organic transformations. An alternative mechanistic manifold is represented by the ability of phenolate derivatives I to form ground state electron donor-acceptor (EDA) complexes with electron-poor radical sources. These complementary scenarios have paved the way for the development of a wide range of relevant organic reactions. In this Minireview, we present the main examples of this research field, and give insight on emerging trends in phenols photocatalysis towards richer organic synthesis.


Asunto(s)
Electrones , Fenoles , Técnicas de Química Sintética , Transporte de Electrón
8.
ACS Nano ; 15(3): 3621-3630, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33715354

RESUMEN

Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.

9.
Biomed Pharmacother ; 132: 110823, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045613

RESUMEN

There has been little innovation in identifying novel insulin sensitizers. Metformin, developed in the 1920s, is still used first for most Type 2 diabetes patients. Mice with genetic reduction of p52Shc protein have improved insulin sensitivity and glucose tolerance. By high-throughput screening, idebenone was isolated as the first small molecule 'Shc Blocker'. Idebenone blocks p52Shc's access to Insulin Receptor to increase insulin sensitivity. In this work the avidity of 34 novel idebenone analogs and 3 metabolites to bind p52Shc, and to block the interaction of p52Shc with the Insulin receptor was tested. Our hypothesis was that if an idebenone analog bound and blocked p52Shc's access to insulin receptor better than idebenone, it should be a more effective insulin sensitizing agent than idebenone itself. Of 34 analogs tested, only 2 both bound p52Shc more tightly and/or blocked the p52Shc-Insulin Receptor interaction more effectively than idebenone. Of those 2 only idebenone analog #11 was a superior insulin sensitizer to idebenone. Also, the long-lasting insulin-sensitizing potency of idebenone in rodents over many hours had been puzzling, as the parent molecule degrades to metabolites within 1 h. We observed that two of the idebenone's three metabolites are insulin sensitizing almost as potently as idebenone itself, explaining the persistent insulin sensitization of this rapidly metabolized molecule. These results help to identify key SAR = structure-activity relationship requirements for more potent small molecule Shc inhibitors as Shc-targeted insulin sensitizers for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor de Insulina/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Ubiquinona/análogos & derivados , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ubiquinona/química , Ubiquinona/farmacología
10.
Chemistry ; 25(70): 16032-16036, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31529711

RESUMEN

The use of amine-rich N-doped carbon nanodots (NCNDs) for the photochemical radical perfluoroalkylation of organic compounds is reported. This operationally simple approach occurs under mild conditions producing valuable new C-C bonds. The chemistry is driven by the ability of NCNDs to directly reach an electronically excited state upon light absorption, thereby successively triggering the formation of reactive radical species from simple perfluoroalkyl iodides. Preliminary mechanistic studies are also reported.

11.
Org Lett ; 21(13): 5341-5345, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31247766

RESUMEN

Two efficient continuous flow iodoperfluoroalkylation methods are described: using 0.05 mol % perylene diimide (PDI) photocatalyst under 450 nm irradiation or substoichiometric triethylamine under 405 nm irradiation. These methods enable dramatically elevated productivity versus batch processes. The triethylamine-mediated method is explored mechanistically and in substrate scope. The gram-scale synthesis of an active pharmaceutical ingredient side chain is also reported in flow, via a photochemical iodoperfluoroalkylation followed by hydrogenolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA