Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4747, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834552

RESUMEN

The unique features of the sulfenamides' S(II)-N bond lead to interesting stereochemical properties and significant industrial functions. Here we present a chemoselective Chan-Lam coupling of sulfenamides to prepare N-arylated sulfenamides. A tridentate pybox ligand governs the chemoselectivity favoring C-N bond formation, and overrides the competitive C-S bond formation by preventing the S,N-bis-chelation of sulfenamides to copper center. The Cu(II)-derived resting state of catalyst is captured by UV-Vis spectra and EPR technique, and the key intermediate is confirmed by the EPR isotope response using 15N-labeled sulfenamide. A computational mechanistic study reveals that N-arylation is both kinetically and thermodynamically favorable, with deprotonation of the sulfenamide nitrogen atom occurring prior to reductive elimination. The origin of ligand-controlled chemoselectivity is explored, with the interaction between the pybox ligand and the sulfenamide substrate controlling the energy of the S-arylation and the corresponding product distribution, in agreement with the EPR studies and kinetic results.

2.
Org Lett ; 26(14): 2713-2717, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37192368

RESUMEN

The copper catalyzed regioselective and stereospecific opening of CF3-aziridines is reported. This method focuses on the synthesis of α-CF3-ß-arylethylamines, which can be potential key intermediates in the synthesis of synthetic analogues and biologically active molecules. Density functional theory calculations reveal the nature of the active copper species and the role of the LiClMgX2 (X = Cl or I) as a Lewis acid. Further, the computed mechanism accounts for the high regioselectivity of this transformation.

3.
J Am Chem Soc ; 145(29): 16045-16057, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441806

RESUMEN

Hydrogen atom transfer (HAT) processes are among the most useful approaches for the selective construction of C(sp3)-C(sp3) bonds. 1,5-HAT with heteroatom-centered radicals (O•, N•) have been well established and are favored relative to other 1,n-HAT processes. In comparison, net 1,2-HAT processes have been observed infrequently. Herein, the first amidyl radicalls are reported that preferentially undergo a net 1,2-HAT over 1,5-HAT. Beginning with single electron transfer from 2-azaallyl anions to N-alkyl N-aryloxy amides, the latter generate amidyl radicals. The amidyl radical undergoes a net-1,2-HAT to generate a C-centered radical that participates in an intermolecular radical-radical coupling with the 2-azaallyl radical to generate 1,2-diamine derivatives. Mechanistic and EPR experiments point to radical intermediates. Density functional theory calculations provide support for a base-assisted, stepwise-1,2-HAT process. It is proposed that the generation of amidyl radicals under basic conditions can be greatly expanded to access α-amino C-centered radicals that will serve as valuable synthetic intermediates.

4.
J Am Chem Soc ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026854

RESUMEN

Protonation of C-M bonds and its microscopic reverse, metalation of C-H bonds, are fundamental steps in a variety of metal-catalyzed processes. As such, studies on protonation of C-M bonds can shed light on C-H activation. We present here studies on the rate of protodemetalation (PDM) of a suite of arylnickel(II) complexes with various acids that provide evidence for a concerted, cyclic transition state for the PDM of C-Ni bonds and demonstrate that five-, six-, and seven-membered transition states are particularly favorable. Our data show that while the rate of protodemetalation of arylnickel(II) complexes scales with acidity for many acids, several are faster than predicted by pKa. For example, while acetic acid and acetohydroxamic acid are much less acidic than HCl, they both protodemetalate arylnickel(II) complexes significantly faster than HCl. Our data also show how in the case of acetohydroxamic acid, a seven-membered cyclic transition state (CH3C(O)NHOH) can be more favorable than a six-membered transition state (CH3C(O)NHOH). Similarly, five-membered transition states, such as for pyrazole, are highly favorable as well. Comparison of transition state polarization (from density functional theory) compares these new nickel transition states to better-studied precious-metal systems and demonstrates how the base can change the polarization of the transition state giving rise to opposing electronic preferences. Collectively, these studies suggest several new avenues for study in C-H activation as well as approaches to accelerate or slow protodemetalation in nickel catalysis.

5.
Chemistry ; 29(40): e202300696, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917701

RESUMEN

Hydrogen bonding is a key molecular interaction in biological processes, drug delivery, and catalysis. This report describes a high throughput UV-Vis spectroscopic method to measure hydrogen bonding capacity using a pyrazinone sensor. This colormetric sensor reversibly binds to a hydrogen bond donor, resulting in a blue shift as additional equivalents of donor are added. Titration with excess equivalents of donor is used to determine the binding coefficient, ln(Keq ). Over 100 titrations were performed for a variety of biologically relevant compounds. This data enabled development a multiple linear regression model that is capable of predicting 95 % of ln(Keq ) values within 1 unit, allowing for the estimation of hydrogen bonding affinity from a single measurement. To show the effectiveness of the single point measurements, hydrogen bond strengths were obtained for a set of carboxylic acid bioisosteres. The values from the single point measurements were validated with full titrations.


Asunto(s)
Colorimetría , Colorimetría/métodos , Enlace de Hidrógeno , Ligandos
6.
J Am Chem Soc ; 144(35): 16171-16183, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36006026

RESUMEN

Cooperative dual catalysis is a powerful strategy for achieving unique reactivity by combining catalysts with orthogonal modes of action. This approach allows for independent control of the absolute and relative stereochemistry of the product. Despite its potential utility, the combination of N-heterocyclic carbene (NHC) organocatalysis and transition metal catalysis has remained a formidable challenge as NHCs readily coordinate metal centers. This characteristic also makes it difficult to rationalize or predict the stereochemical outcomes of these reactions. Herein, we use quantum mechanical calculations to investigate formation of γ-butyrolactones from aldehydes and allyl cyclic carbonates by means of an NHC organocatalyst and an iridium catalyst. Stereoconvergent activation of the racemic allyl cyclic carbonate forms an Ir-π-allyl intermediate and activation of an unsaturated aldehyde forms an NHC enolate, the latter of which is rate-limiting. Union of the two fragments leads to stereodetermining C-C bond formation and ultimately ring closure to generate the product lactone. Notably, CO2 loss occurs after formation of the C-C bond and Et3NH+ plays a key role in stabilizing carboxylate intermediates and in facilitating proton transfer to form the NHC enolate. The computed pathways agree with the experimental findings in terms of the absolute configuration, the enantiomer excess, and the different diastereomers seen with the (R)- and (S)-spiro-phosphoramidite combined with the NHC catalyst. Calculations reveal the lowest energy pathway includes both an NHC ligand and a phosphoramidite ligand on the iridium center. However, the stereochemical features of this Ir-bound NHC were found to not contribute to the selectivity of the process.


Asunto(s)
Compuestos Heterocíclicos , Iridio , 4-Butirolactona , Aldehídos/química , Catálisis , Compuestos Heterocíclicos/química , Iridio/química , Ligandos , Metano/análogos & derivados
7.
Chem Commun (Camb) ; 57(93): 12508-12511, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34751287

RESUMEN

An iron-catalyzed regioselective dicarbofunctionalization of electron-rich alkenes is described. In particular, aryl- and alkyl vinyl ethers are used as effective linchpins to couple alkyl or (fluoro)alkyl halides and sp2-hybridized Grignard nucleophiles. Preliminary results demonstrate the ability to engage thioethers as linchpins and control enantioselectivity in these transformations, an area which is largely unexplored in iron-catalyzed three-component cross-coupling reactions.

8.
J Am Chem Soc ; 143(24): 9026-9039, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34110130

RESUMEN

The intermediacy of metallacyclobutadienes as part of a [2 + 2]/retro-[2 + 2] cycloaddition-based mechanism is a well-established paradigm in alkyne metathesis with alternative species viewed as off-cycle decomposition products that interfere with efficient product formation. Recent work has shown that the exclusive intermediate isolated from a siloxide podand-supported molybdenum-based catalyst was not the expected metallacyclobutadiene but instead a dynamic metallatetrahedrane. Despite their paucity in the chemical literature, theoretical work has shown these species to be thermodynamically more stable as well as having modest barriers for cycloaddition. Consequentially, we report the synthesis of a library of group VI alkylidynes as well as the roles metal identity, ligand flexibility, secondary coordination sphere, and substrate identity all have on isolable intermediates. Furthermore, we report the disparities in catalyst competency as a function of ligand sterics and metal choice. Dispersion-corrected DFT calculations are used to shed light on the mechanism and role of ligand and metal on the intermediacy of metallacyclobutadiene and metallatetrahedrane as well as their implications to alkyne metathesis.


Asunto(s)
Alquinos/síntesis química , Complejos de Coordinación/química , Metales Pesados/química , Alquinos/química , Catálisis , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Ligandos , Estructura Molecular
9.
ACS Catal ; 10(1): 897-906, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34113476

RESUMEN

Carbon-nitrogen bonds are extremely prevalent in pharmaceuticals, natural products, and other biologically relevant molecules such as nucleic acids and proteins. Intermolecular amination of C(sp3)-H bonds by catalytic nitrene transfer is a promising method for forging C-N bonds. An organocatalytic approach to nitrene transfer by way of an iminium salt offers a site-selective method for C(sp3)-H amination. Understanding of this amination mechanism including the nature of the relevant intermediates and the factors controlling the mechanism of the N-H bond formation step would aid in the design of catalysts and C(sp3)-H amination methods. In this work, the mechanism of the iminium salt-catalyzed C(sp3)-H amination via nitrene transfer was elucidated computationally using quantum mechanical methods and molecular dynamics simulations. Dispersion-corrected density functional theory (DFT) calculations provide support for an open singlet biradical species in equilibrium with the lower energy triplet species. Calculations further reveal that while the singlet biradical species undergoes N-H bond formation by a hydride transfer process, the triplet species forms the N-H bond by H-atom abstraction. Molecular dynamics (MD) simulations rule out the possibility of a fast rebound of the carbon substrate following N-H bond formation. A predictive model for mode of activation and site-selectivity that is consistent with experimental observations is presented.

10.
J Am Chem Soc ; 141(37): 14843-14852, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31438667

RESUMEN

Asymmetric allylic fluorination has proven to be a robust and efficient methodology with potential applications for the development of pharmaceuticals and practical synthesis for 18F-radiolabeling. A combined computational (dispersion-corrected DFT) and experimental approach was taken to interrogate the mechanism of the diene-ligated, iridium-catalyzed regio- and enantioselective allylic fluorination. Our group has shown that, in the presence of an iridium(I) catalyst and nucleophilic fluoride source (Et3N·3HF), allylic trichloroacetimidates undergo rapid fluoride substitution to generate allylic fluoride products with excellent levels of branched-to-linear ratios. Mechanistic studies reveal the crucial role of the trichloroacetimidate as a potent leaving group and ligand to enable conversion of racemic allylic trichloroacetimidates to the corresponding enantioenriched allylic fluorides, via a dynamic kinetic asymmetric transformation (DYKAT), in the presence of the chiral bicyclo[3.3.0]octadiene-ligated iridium catalyst.

11.
ACS Catal ; 9(9): 8835-8842, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34055458

RESUMEN

Herein, the introduction of oxa- and azabenzonorbornadienes into photoredox/nickel dual catalysis in a regioselective and diastereoselective transformation is disclosed. The inherent advantages of this dual catalytic system allow the use of alkyl motifs forming exclusively cis-1,2-dihydro-1-naphthyl alcohol backbones using readily accessible 4-alkyl-1,4-dihydropyridines (DHPs). Whereas previous studies have emphasized the use of nucleophilic organometallic coupling partners, this protocol grants access to a rather unexplored core featuring alkyl residues, while avoiding the use of highly reactive organometallic species (i.e., M = Al, Mg, Li, Zn, Zr). DFT calculations support a oxidative addition/reductive elimination mechanism, followed by a Curtin-Hammett scenario that controls the regioselectivity of the process, unlike previously reported transformations that proceed via a carbometalation/ ß-oxygen elimination mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...