Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746221

RESUMEN

Peroxisomal Biogenesis Disorders Zellweger Spectrum (PBD-ZSD) disorders are a group of autosomal recessive defects in peroxisome formation that produce a multi-systemic disease presenting at birth or in childhood. Well documented clinical biomarkers such as elevated very long chain fatty acids (VLCFA) are key biochemical diagnostic findings in these conditions. Additional, secondary biochemical alterations such as elevated very long chain lysophosphatidylcholines are allowing newborn screening for peroxisomal disease. In addition, a more widespread impact on metabolism and lipids is increasingly being documented by metabolomic and lipidomic studies. Here we utilize Drosophila models of pex2 and pex16 as well as human plasma from individuals with PEX1 mutations. We identify phospholipid abnormalities in Drosophila larvae and brain characterized by differences in the quantities of phosphatidylcholine (PC) and phosphatidylethanolamines (PE) with long chain lengths and reduced levels of intermediate chain lengths. For diacylglycerol (DAG) the precursor of PE and PC through the Kennedy pathway, the intermediate chain lengths are increased suggesting an imbalance between DAGs and PE and PC that suggests the two acyl chain pools are not in equilibrium. Altered acyl chain lengths are also observed in PE ceramides in the fly models. Interestingly, plasma from human subjects exhibit phospholipid alterations similar to the fly model. Moreover, human plasma shows reduced levels of sphingomyelin with 18 and 22 carbon lengths but normal levels of C24. Our results suggest that peroxisomal biogenesis defects alter shuttling of the acyl chains of multiple phospholipid and ceramide lipid classes, whereas DAG species with intermediate fatty acids are more abundant. These data suggest an imbalance between de novo synthesis of PC and PE through the Kennedy pathway and remodeling of existing PC and PE through the Lands cycle. This imbalance is likely due to overabundance of very long and long acyl chains in PBD and a subsequent imbalance due to substrate channeling effects. Given the fundamental role of phospholipid and sphingolipids in nervous system functions, these observations suggest PBD-ZSD are diseases characterized by widespread cell membrane lipid abnormalities.

2.
Front Plant Sci ; 14: 1299371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164249

RESUMEN

At the cellular level, membrane damage is a fundamental cause of yield loss at high temperatures (HT). We report our investigations on a subset of a peanut (Arachis hypogaea) recombinant inbred line population, demonstrating that the membrane lipid remodeling occurring at HT is consistent with homeoviscous adaptation to maintain membrane fluidity. A major alteration in the leaf lipidome at HT was the reduction in the unsaturation levels, primarily through reductions of 18:3 fatty acid chains, of the plastidic and extra-plastidic diacyl membrane lipids. In contrast, levels of 18:3-containing triacylglycerols (TGs) increased at HT, consistent with a role for TGs in sequestering fatty acids when membrane lipids undergo remodeling during plant stress. Polyunsaturated acyl chains from membrane diacyl lipids were also sequestered as sterol esters (SEs). The removal of 18:3 chains from the membrane lipids decreased the availability of susceptible molecules for oxidation, thereby minimizing oxidative damage in membranes. Our results suggest that transferring 18:3 chains from membrane diacyl lipids to TGs and SEs is a key feature of lipid remodeling for HT adaptation in peanut. Finally, QTL-seq allowed the identification of a genomic region associated with heat-adaptive lipid remodeling, which would be useful for identifying molecular markers for heat tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA