Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
EJNMMI Res ; 13(1): 23, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36947258

Transforming growth factor ß (TGFß) activity is perturbed in remodelled pulmonary vasculature of patients with pulmonary arterial hypertension (PAH), cancer, vascular diseases and developmental disorders. Inhibition of TGFß, which signals via activin receptor-like kinase 5 (ALK5), prevents progression and development of experimental PAH. The purpose of this study was to assess two ALK5 targeting positron emission tomography (PET) tracers ([11C]LR111 and [18F]EW-7197) for imaging ALK5 in monocrotaline (MCT)- and Sugen/hypoxia (SuHx)-induced PAH. Both tracers were subjected to extensive in vitro and in vivo studies. [11C]LR111 showed the highest metabolic stability, as 46 ± 2% of intact tracer was still present in rat blood plasma after 60 min. In autoradiography experiments, [11C]LR111 showed high ALK5 binding in vitro compared with controls, 3.2 and 1.5 times higher in SuHx and MCT, respectively. In addition, its binding could be blocked by SB431542, an adenosine triphosphate competitive ALK5 kinase inhibitor. However, [18F]EW-7197 showed the best in vivo results. 15 min after injection, uptake was 2.5 and 1.4 times higher in the SuHx and MCT lungs, compared with controls. Therefore, [18F]EW-7197 is a promising PET tracer for ALK5 imaging in PAH.

2.
Nucl Med Biol ; 112-113: 9-19, 2022.
Article En | MEDLINE | ID: mdl-35660796

The transforming growth factor ß (TGFß) pathway plays a complex role in cancer biology, being involved in both tumour suppression as well as promotion. Overactive TGFß signalling has been linked to multiple diseases, including cancer, pulmonary arterial hypertension, and fibrosis. One of the key meditators within this pathway is the TGFß type I receptor, also termed activin receptor-like kinase 5 (ALK5). ALK5 expression level is a key determinant of TGFß signalling intensity and duration, and perturbation has been linked to diseases. A validated ALK5 positron emission tomography (PET) tracer creates an opportunity, therefore, to study its role in human diseases. To develop ALK5 PET tracers, two small molecule ALK5 kinase inhibitors were selected as lead compounds, which were labelled with carbon-11 and fluorine-18, respectively. [11C]LR111 was synthesized with a yield of 17 ± 6%, a molar activity of 126 ± 79 GBq·µmol-1 and a purity of >95% (n = 44). [18F]EW-7197 was synthesized with a yield of 10 ± 5%, a molar activity of 183 ± 126 GBq·µmol-1 and a purity of >95% (n = 11). Metabolic stability was evaluated in vivo in mice, showing 39 ± 2% of intact [11C]LR111 and 21 ± 2% of intact [18F]EW-7197 in blood plasma at 45 min p.i. In vitro binding experiments were conducted in breast cancer MDA-MB-231 and lung cancer A431 cell lines. In addition, both tracers were used for PET imaging in MDA-MB-231 xenograft models. Selective uptake of [18F]EW-7197 and [11C]LR111 was observed in MDA-MB-231 cells, in the MDA-MB-231 tumour xenografts in vivo and in the autoradiograms. As [11C]LR111 and [18F]EW-7197 showed selectivity of binding to ALK5 in vivo and in vitro. Both tracers are thereby valuable tools for the detection of ALK5 activity.


Lung Neoplasms , Positron-Emission Tomography , Activins , Aniline Compounds , Animals , Humans , Mice , Positron-Emission Tomography/methods , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta/metabolism , Triazoles
3.
Drug Discov Today ; 24(12): 2258-2272, 2019 12.
Article En | MEDLINE | ID: mdl-31494189

The transforming growth factor ß (TGFß) family of cytokines achieves homeostasis through a careful balance and crosstalk with complex signalling pathways. Inappropriate activation or inhibition of this pathway and mutations in its components are related to diseases such as cancer, vascular diseases, and developmental disorders. Quantitative imaging of expression levels of key regulators within this pathway using positron emission tomography (PET) can provide insights into the role of this pathway in vivo, providing information on underlying pathophysiological processes. PET imaging can also be used to study the drug targeting of this pathway and to detect diseases in which this pathway is disturbed. In this review, we provide an overview of PET tracers available to study the TGFß signalling pathway. In addition, we discuss future imaging targets for this pathway and possible leads for new PET tracers.


Positron-Emission Tomography/methods , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Animals , Drug Development/methods , Humans , Molecular Targeted Therapy
4.
J Labelled Comp Radiopharm ; 60(12): 566-576, 2017 10.
Article En | MEDLINE | ID: mdl-28755455

The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1-iodo-2-[11 C]methylpropane and 2-methyl-1-[11 C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2-Methyl-1-[11 C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 µmol) were needed. 1-Iodo-2-[11 C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1-iodo-2-[11 C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11 C]2-methyl-1-propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/µmol at the end of synthesis. Altogether, the syntheses of 1-iodo-2-[11 C]methylpropane and 2-methyl-1-[11 C]propanol were achieved and applied as proof of their applicability.


1-Propanol/chemistry , 1-Propanol/chemical synthesis , Iodine Radioisotopes/chemistry , Propane/chemistry , Propane/chemical synthesis , Alkylation , Isotope Labeling , Positron-Emission Tomography , Radiochemistry
5.
J Labelled Comp Radiopharm ; 58(8): 342-8, 2015 Jun 30.
Article En | MEDLINE | ID: mdl-26031614

Positron emission tomography has increased the demand for new carbon-11 radiolabeled tracers and building blocks. A promising radiolabeling synthon is [(11) C]benzyl iodide ([(11) C]BnI), because the benzyl group is a widely present functionality in biologically active compounds. Unfortunately, synthesis of [(11) C]BnI has received little attention, resulting in limited application. Therefore, we investigated the synthesis in order to significantly improve, automate, and apply it for labeling of the dopamine D2 antagonist [(11) C]clebopride as a proof of concept. [(11) C]BnI was synthesized from [(11) C]CO2 via a Grignard reaction and purified prior the reaction with desbenzyl clebopride. According to a one-pot procedure, [(11) C]BnI was synthesized in 11 min from [(11) C]CO2 with high yield, purity, and specific activity, 52 ± 3% (end of the cyclotron bombardment), 95 ± 3%, and 123 ± 17 GBq/µmol (end of the synthesis), respectively. Changes in the [(11) C]BnI synthesis are reduced amounts of reagents, a lower temperature in the Grignard reaction, and the introduction of a solid-phase intermediate purification. [(11) C]Clebopride was synthesized within 28 min from [(11) C]CO2 in an isolated decay-corrected yield of 11 ± 3% (end of the cyclotron bombardment) with a purity of >98% and specific activity (SA) of 54 ± 4 GBq/µmol (n = 3) at the end of the synthesis. Conversion of [(11) C]BnI to product was 82 ± 11%. The reliable synthesis of [(11) C]BnI allows the broad application of this synthon in positron emission tomography radiopharmaceutical development.


Benzyl Compounds/chemical synthesis , Brain/diagnostic imaging , Carbon Radioisotopes , Hydrocarbons, Iodinated/chemical synthesis , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Humans , Isotope Labeling/methods , Molecular Structure
6.
J Org Chem ; 77(17): 7355-63, 2012 Sep 07.
Article En | MEDLINE | ID: mdl-22897640

Hydroxy-aryl-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles represent interesting chemical scaffolds, but synthetic access to these compounds is limited. The reaction of 2-aroyl-cyclohexanones with 2-cyanoacetamide and base in ethanol has been reported to lead to the formation of the tetrahydroisoquinoline isomer. We show that depending on the electronic nature of the para-substituent on the aryl ring, formation of the regioisomeric tetrahydroquinoline isomer can significantly compete. The electron-donating or -withdrawing properties of the para-substituent of the aryl ring determines the ratio of product isomers. A series of 2-aroyl-cyclohexanones, with para-substituents ranging from electron-donating to electron-withdrawing, were reacted with [2-(13)C]-cyanoacetamide. The product ratio and absolute regiochemistry were directly determined by quantitative (13)C, HMBC, and NOESY NMR spectroscopy on the reaction mixtures. A clear relationship between the regioisomeric product ratio and the Hammett sigma values of the substituents is demonstrated. This is explained by the separate in situ yields, which reveal that the pathway leading to the tetrahydroquinoline regioisomer is significantly more sensitive toward the electronic nature of the para-substituent than the pathway leading to the tetrahydroisoquinoline. Semiempirical AM1 molecular orbital calculations on the starting electrophile 2-aroyl-cyclohexanone support a correlation between the energy of the LUMOs and the regioisomeric product ratio. Our results facilitate synthetic access to a range of these interesting synthetic intermediates.


Cyclohexanones/chemistry , Nitriles/chemical synthesis , Quantum Theory , Carbon Isotopes , Molecular Structure , Nitriles/chemistry , Staining and Labeling , Stereoisomerism
...