Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Pharm ; 650: 123671, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38065345

In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.


Bone Screws , Water , Solubility , Particle Size , Wettability , Drug Compounding , Technology, Pharmaceutical
2.
Saline Syst ; 6: 3, 2010 Mar 31.
Article En | MEDLINE | ID: mdl-20356384

The relation between climatic parameters (relative air humidity) and the water activity of the Urmia Sea water determines the possible maximum evaporation of the lake. Using the Pitzer thermodynamic approach, the activity of the Urmia Lake water during evaporation was calculated and compared to the present relative air humidity above the water. Present climatic conditions allow the Urmia Sea water to evaporate down to water with activity of 0.55, corresponding to the lowest air humidity measured over the lake. This water activity falls in the range of halite precipitation, while carnalite precipitation starts at somewhat lower (a H2O = 0.499) point. Our dynamic model predicts that for air humidity as low as 55% (reflecting present climate conditions), the Urmia Sea level may drop to as low as 1270 m (i. e., 1270 m above mean sea level). At that point, the lake water volume will have a volume of 11 km3. For the sake of comparison, at the beginning of 1990, the level of the lake was 1275 m, its volume was 25 km3, and its surface area was 5145 km2.

...