Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124093, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428162

RESUMEN

Theoretical computations of pyrimidine-based azo dyes were performed by the DFT approach using the B3LYP/6 - 31G(d,p) basis set. The molecules were optimized based on the same basis set by calculating the minimum energy. FMOs, DOS and GCRD were computed for kinetic stability and chemical reactivity of the selected compounds. The MEP surface was studied to locate nucleophilic and electrophilic attack zones. The energy gap was carefully studied for pyrimidine-based azo dyes. Vibrational spectroscopy was studied in the most prominent regions with respect to PED assignments. Similarly, the UV-Vis absorption technique was calculated using the TD-DFT approach in different solvent media. The electronic structure of each atom in a molecule was examined via the electron localization function (ELF) and localized orbital locator (LOL). Non-covalent interactions were explored using reduced density gradient analysis. The combination of experimental and theoretical data allowed us to correlate the structural modifications with the observed photophysical properties, facilitating the design of azo dyes with tailored characteristics. This work contributes to the fundamental understanding of azo dyes and offers a foundation for the development of new materials with enhanced photophysical and electronic properties.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123130, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37517274

RESUMEN

This paper reports on a study of the photophysical properties, density functional theory (DFT) calculations, infrared (IR), ultraviolet (UV) and nuclear magnetic resonance (NMR) spectroscopic techniques of a series of aurone compounds. The photophysical properties were investigated using UV absorption and fluorescence spectroscopy in a dimethyl sulfoxide (DMSO) solution. Furthermore, the fluorescence quantum yields of the target compounds (1-24) were also investigated. Remarkably, these compounds revealed high quantum yields (Φ = 0.001-0.729) as compared to the already existing aurones in literature. The DFT calculations were performed to elucidate the electronic structure, energy levels and draw a comparison between experimental and theoretical findings. The simulated properties such as molecular frontier orbitals, the density of states, reactivity descriptors (GCRD), electrostatic potential distribution, transition density matrix, electron localization function (ELF) and localized orbital locator (LOL) have been calculated using DFT. The DFT calculations provided insight into the electronic structure and energy levels of the aurone compounds, while the IR and UV spectroscopy results shed light on their functional groups and electronic transitions, respectively. The results of this study contribute to a better understanding of the photophysical properties of aurone compounds and suggest their potential use in technological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...