Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(6): 2442-2456, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39044460

RESUMEN

The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.


Asunto(s)
ADN Circular , ADN Mitocondrial , Transferencia de Gen Horizontal , Filogenia , ADN Mitocondrial/genética , ADN Circular/genética , Reparación del ADN/genética , Genoma Mitocondrial/genética
2.
Ann Bot ; 132(5): 909-928, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37503831

RESUMEN

BACKGROUND: The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE: This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS: Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.


Asunto(s)
Genoma Mitocondrial , Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Genoma Mitocondrial/genética , Evolución Molecular , Plastidios , Filogenia
3.
Mol Phylogenet Evol ; 162: 107208, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34029719

RESUMEN

The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.


Asunto(s)
Secuencia Rica en At/genética , Balanophoraceae/genética , Evolución Molecular , Código Genético , Genoma de Plastidios , Genes de Plantas/genética , Filogenia
4.
Plant Mol Biol ; 103(6): 623-638, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32440763

RESUMEN

Horizontal gene transfer (HGT) is frequent in parasitic plant mitochondria as a result of vascular connections established in host-parasite relationships. Recent studies of the holoparasitic plant Lophophytum mirabile (Balanophoraceae) revealed the unprecedented acquisition of a large amount of mitochondrial sequences from its legume host. We focused on a close relative, the generalist holoparasite Ombrophytum subterraneum, to examine the incidence of HGT events in the mitochondrial genome (mtDNA). The mtDNA of O. subterraneum assembles into 54 circular chromosomes, only 34 of which contain the 51 full-length coding regions. Numerous foreign tracts (totaling almost 100 kb, ~ 14% of the mtDNA), including 12 intact genes, were acquired by HGT from the Asteraceae hosts. Nine chromosomes concentrate most of those regions and eight are almost entirely foreign. Native homologs of each foreign gene coexist in the mtDNA and are potentially functional. A large proportion of shorter regions were related to the Fabaceae (a total of ~ 110 kb, 15.4%), some of which were shared with L. mirabile. We also found evidence of foreign sequences donated by angiosperm lineages not reported as hosts (Apocynaceae, Euphorbiaceae, Lamiaceae, and Malvales). We propose an evolutionary hypothesis that involves ancient transfers from legume hosts in the common ancestor of Ombrophytum and Lophophytum followed by more recent transfer events in L. mirabile. Besides, the O. subterraneum mtDNA was also subjected to additional HGT events from diverse angiosperm lineages, including large and recent transfers from the Asteraceae, and also from Lamiaceae.


Asunto(s)
Balanophoraceae/genética , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Transferencia de Gen Horizontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA