Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575601

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
2.
NPJ Parkinsons Dis ; 10(1): 65, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504090

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and presents pathologically with Lewy pathology and dopaminergic neurodegeneration. Lewy pathology contains aggregated α-synuclein (αSyn), a protein encoded by the SNCA gene which is also mutated or duplicated in a subset of familial PD cases. Due to its predominant presynaptic localization, immunostaining for the protein results in a diffuse reactivity pattern, providing little insight into the types of cells expressing αSyn. As a result, insight into αSyn expression-driven cellular vulnerability has been difficult to ascertain. Using a combination of knock-in mice that target αSyn to the nucleus (SncaNLS) and in situ hybridization of Snca in wild-type mice, we systematically mapped the topography and cell types expressing αSyn in the mouse brain, spinal cord, retina, and gut. We find a high degree of correlation between αSyn protein and RNA levels and further identify cell types with low and high αSyn content. We also find high αSyn expression in neurons, particularly those involved in PD, and to a lower extent in non-neuronal cell types, notably those of oligodendrocyte lineage, which are relevant to multiple system atrophy pathogenesis. Surprisingly, we also found that αSyn is relatively absent from select neuron types, e.g., ChAT-positive motor neurons, whereas enteric neurons universally express some degree of αSyn. Together, this integrated atlas provides insight into the cellular topography of αSyn, and provides a quantitative map to test hypotheses about the role of αSyn in network vulnerability, and thus serves investigations into PD pathogenesis and other α-synucleinopathies.

3.
eNeuro ; 10(10)2023 10.
Article En | MEDLINE | ID: mdl-37775311

Cajal-Retzius (CR) cells are transient neurons with long-lasting effects on the architecture and circuitry of the neocortex and hippocampus. Contrary to the prevailing assumption that CR cells completely disappear in rodents shortly after birth, a substantial portion of these cells persist in the hippocampus throughout adulthood. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly because of the paucity of suitable tools to dissect their functions in the adult versus the embryonic brain. Here, we show that genetic crosses of the ΔNp73-Cre mouse line, widely used to target CR cells, to reporter mice induce reporter expression not only in CR cells, but also progressively in postnatal dentate gyrus granule neurons. Such a lack of specificity may confound studies of CR cell function in the adult hippocampus. To overcome this, we devise a method that not only leverages the temporary CR cell-targeting specificity of the ΔNp73-Cre mice before the first postnatal week, but also capitalizes on the simplicity and effectiveness of freehand neonatal intracerebroventricular injection of adeno-associated virus. We achieve robust Cre-mediated recombination that remains largely restricted to hippocampal CR cells from early postnatal age to adulthood. We further demonstrate the utility of this method to manipulate neuronal activity of CR cells in the adult hippocampus. This versatile and scalable strategy will facilitate experiments of CR cell-specific gene knockdown and/or overexpression, lineage tracing, and neural activity modulation in the postnatal and adult brain.


Hippocampus , Neocortex , Mice , Animals , Hippocampus/metabolism , Neurons/physiology , Cell Movement
4.
iScience ; 26(4): 106350, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37009224

SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox" for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code" in cells of the central nervous system.

5.
Methods Mol Biol ; 2515: 151-169, 2022.
Article En | MEDLINE | ID: mdl-35776351

Neuron death is a key feature of neurological disorders like Alzheimer's or Parkinson's disease (PD). As a result, analysis of neurodegeneration is often considered a central experiment in the postmortem characterization of preclinical PD animal models. Stereology provides a precise estimate of particles, like neurons, in three-dimensional objects, like the brain, and is the gold standard quantification approach for the assessment of neuron survival in neurodegenerative disease research. Here, we provide a detailed step-by-step guide for the quantification of dopaminergic neurons in the substantia nigra pars compacta, a brain area prone to neuron loss in PD. In addition, we outline the protocol for the analysis of the dopaminergic terminals in the striatum, the projection area of midbrain dopaminergic neurons, as a readout for the integrity of the nigrostriatal projections.


Neurodegenerative Diseases , Parkinson Disease , Animals , Corpus Striatum , Dopamine , Dopaminergic Neurons , Mice , Neostriatum
6.
Elife ; 112022 07 01.
Article En | MEDLINE | ID: mdl-35775627

The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson's disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in the mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.


Basolateral Nuclear Complex , Parkinson Disease , Animals , Basolateral Nuclear Complex/metabolism , Mice , Neurons/metabolism , Parkinson Disease/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission , alpha-Synuclein/metabolism
7.
BMC Biol ; 20(1): 115, 2022 05 17.
Article En | MEDLINE | ID: mdl-35581583

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Neurons , Signal Transduction , Cells, Cultured , Neurons/metabolism , Phosphorylation , Signal Transduction/physiology
8.
Hum Mol Genet ; 31(21): 3613-3628, 2022 10 28.
Article En | MEDLINE | ID: mdl-35179202

A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson's disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis.


Motor Disorders , Parkinson Disease , Animals , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Protein Aggregates , Parkinson Disease/metabolism , Phosphorylation
9.
EMBO J ; 40(7): e106106, 2021 04 01.
Article En | MEDLINE | ID: mdl-33709453

A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.


Brain Stem/metabolism , Cerebellum/metabolism , DNA-Binding Proteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Spinocerebellar Ataxias/metabolism , Transcription Factors/metabolism , Animals , Ataxin-1/genetics , Ataxin-1/metabolism , Cell Line, Tumor , Cells, Cultured , DNA-Binding Proteins/genetics , Drosophila melanogaster , HEK293 Cells , Humans , Mice , Phosphorylation , Protein Stability , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Spinocerebellar Ataxias/genetics , Transcription Factors/genetics
10.
Mol Neurodegener ; 15(1): 45, 2020 08 15.
Article En | MEDLINE | ID: mdl-32799899

Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.


Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/metabolism , TDP-43 Proteinopathies/pathology , Humans
12.
J Neurosci ; 40(2): 459-477, 2020 01 08.
Article En | MEDLINE | ID: mdl-31748376

α-Synuclein (α-Syn) accumulation is a pathological hallmark of Parkinson's disease. Duplications and triplications of SNCA, the gene coding for α-Syn, cause genetic forms of the disease, which suggests that increased α-Syn dosage can drive PD. To identify the proteins that regulate α-Syn, we previously performed a screen of potentially druggable genes that led to the identification of 60 modifiers. Among them, Doublecortin-like kinase 1 (DCLK1), a microtubule binding serine threonine kinase, emerged as a promising target due to its potent effect on α-Syn and potential druggability as a neuron-expressed kinase. In this study, we explore the relationship between DCLK1 and α-Syn in human cellular and mouse models of PD. First, we show that DCLK1 regulates α-Syn levels post-transcriptionally. Second, we demonstrate that knockdown of Dclk1 reduces phosphorylated species of α-Syn and α-Syn-induced neurotoxicity in the SNc in two distinct mouse models of synucleinopathy. Last, silencing DCLK1 in human neurons derived from individuals with SNCA triplications reduces phosphorylated and total α-Syn, thereby highlighting DCLK1 as a potential therapeutic target to reduce pathological α-Syn in disease.SIGNIFICANCE STATEMENT DCLK1 regulates α-Syn protein levels, and Dclk1 knockdown rescues α-Syn toxicity in mice. This study provides evidence for a novel function for DCLK1 in the mature brain, and for its potential as a new therapeutic target for synucleinopathies.


Intracellular Signaling Peptides and Proteins/metabolism , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/metabolism , alpha-Synuclein/metabolism , Animals , Doublecortin-Like Kinases , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism
13.
Genome Res ; 29(6): 999-1008, 2019 06.
Article En | MEDLINE | ID: mdl-31015259

The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches accessible to virtually any laboratory. Analyzing the large sequencing data derived from these studies, however, still demands considerable bioinformatics expertise. Various methods have been developed to lessen this requirement, but there are still three tasks for accurate CRISPR screen analysis that involve bioinformatic know-how, if not prowess: designing a proper statistical hypothesis test for robust target identification, developing an accurate mapping algorithm to quantify sgRNA levels, and minimizing the parameters that need to be fine-tuned. To make CRISPR screen analysis more reliable as well as more readily accessible, we have developed a new algorithm, called CRISPRBetaBinomial or CB2 Based on the beta-binomial distribution, which is better suited to sgRNA data, CB2 outperforms the eight most commonly used methods (HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA) in both accurately quantifying sgRNAs and identifying target genes, with greater sensitivity and a much lower false discovery rate. It also accommodates staggered sgRNA sequences. In conjunction with CRISPRcloud, CB2 brings CRISPR screen analysis within reach for a wider community of researchers.


CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Computational Biology , Models, Statistical , Computational Biology/methods , Computational Biology/standards , Gene Editing , Gene Targeting , Genetic Association Studies/methods , RNA, Guide, Kinetoplastida , Sensitivity and Specificity
14.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Article En | MEDLINE | ID: mdl-30249792

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Genome/genetics , Neurons/physiology , RNA Interference/physiology , Sequence Analysis, RNA/methods , alpha-Synuclein/genetics , Animals , Animals, Newborn , Drosophila , Female , HEK293 Cells , Humans , Male , Mice , Reproducibility of Results , Species Specificity
15.
Neuron ; 97(6): 1235-1243.e5, 2018 03 21.
Article En | MEDLINE | ID: mdl-29526553

Polyglutamine (polyQ) diseases are caused by expansion of translated CAG repeats in distinct genes leading to altered protein function. In spinocerebellar ataxia type 1 (SCA1), a gain of function of polyQ-expanded ataxin-1 (ATXN1) contributes to cerebellar pathology. The extent to which cerebellar toxicity depends on its cognate partner capicua (CIC), versus other interactors, remains unclear. It is also not established whether loss of the ATXN1-CIC complex in the cerebellum contributes to disease pathogenesis. In this study, we exclusively disrupt the ATXN1-CIC interaction in vivo and show that it is at the crux of cerebellar toxicity in SCA1. Importantly, loss of CIC in the cerebellum does not cause ataxia or Purkinje cell degeneration. Expression profiling of these gain- and loss-of-function models, coupled with data from iPSC-derived neurons from SCA1 patients, supports a mechanism in which gain of function of the ATXN1-CIC complex is the major driver of toxicity.


Ataxin-1/deficiency , Cerebellum/metabolism , Gain of Function Mutation/physiology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Animals , Ataxin-1/genetics , Cells, Cultured , Cerebellum/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spinocerebellar Ataxias/pathology
16.
Proc Natl Acad Sci U S A ; 115(7): E1511-E1519, 2018 02 13.
Article En | MEDLINE | ID: mdl-29382756

Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.


Cell Differentiation , Disease Susceptibility , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Repressor Proteins/physiology , T-Lymphocytes/pathology , Animals , Cells, Cultured , Mice , Mice, Knockout , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , T-Lymphocytes/metabolism , ras Proteins/genetics , ras Proteins/metabolism
17.
F1000Res ; 6: 1121, 2017.
Article En | MEDLINE | ID: mdl-28751973

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.

18.
Bioinformatics ; 33(18): 2963-2965, 2017 Sep 15.
Article En | MEDLINE | ID: mdl-28541456

SUMMARY: We present a user-friendly, cloud-based, data analysis pipeline for the deconvolution of pooled screening data. This tool, CRISPRcloud, serves a dual purpose of extracting, clustering and analyzing raw next generation sequencing files derived from pooled screening experiments while at the same time presenting them in a user-friendly way on a secure web-based platform. Moreover, CRISPRcloud serves as a useful web-based analysis pipeline for reanalysis of pooled CRISPR screening datasets. Taken together, the framework described in this study is expected to accelerate development of web-based bioinformatics tool for handling all studies which include next generation sequencing data. AVAILABILITY AND IMPLEMENTATION: http://crispr.nrihub.org. CONTACT: zhandong.liu@bcm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Software , Clustered Regularly Interspaced Short Palindromic Repeats , Sequence Analysis, DNA
19.
Nat Genet ; 49(4): 527-536, 2017 Apr.
Article En | MEDLINE | ID: mdl-28288114

Gain-of-function mutations in some genes underlie neurodegenerative conditions, whereas loss-of-function mutations in the same genes have distinct phenotypes. This appears to be the case with the protein ataxin 1 (ATXN1), which forms a transcriptional repressor complex with capicua (CIC). Gain of function of the complex leads to neurodegeneration, but ATXN1-CIC is also essential for survival. We set out to understand the functions of the ATXN1-CIC complex in the developing forebrain and found that losing this complex results in hyperactivity, impaired learning and memory, and abnormal maturation and maintenance of upper-layer cortical neurons. We also found that CIC activity in the hypothalamus and medial amygdala modulates social interactions. Informed by these neurobehavioral features in mouse mutants, we identified five individuals with de novo heterozygous truncating mutations in CIC who share similar clinical features, including intellectual disability, attention deficit/hyperactivity disorder (ADHD), and autism spectrum disorder. Our study demonstrates that loss of ATXN1-CIC complexes causes a spectrum of neurobehavioral phenotypes.


Ataxin-1/genetics , Autism Spectrum Disorder/genetics , Neurodegenerative Diseases/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Animals , Cerebellum/pathology , Female , Humans , Intellectual Disability/genetics , Interpersonal Relations , Male , Mice , Nerve Tissue Proteins/genetics , Phenotype
20.
Mol Cell Proteomics ; 16(4): 581-593, 2017 04.
Article En | MEDLINE | ID: mdl-28153913

Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/.


Parkinson Disease/metabolism , Pars Compacta/metabolism , Proteomics/methods , Ventral Tegmental Area/metabolism , Animals , Brain Mapping , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Proteome/analysis
...