Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Environ Sci Technol ; 57(45): 17511-17521, 2023 11 14.
Article En | MEDLINE | ID: mdl-37902062

Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017-2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ≥ 0.67), whereas total Hg in sediment was not (R2 ≤ 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.


Mercury , Methylmercury Compounds , Odonata , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Mercury/analysis , Amphibians , Environmental Monitoring
2.
Environ Monit Assess ; 193(2): 58, 2021 Jan 13.
Article En | MEDLINE | ID: mdl-33439357

Land use alteration such as livestock grazing can affect water quality in habitats of at-risk wildlife species. Data from managed wetlands are needed to understand levels of exposure for aquatic life stages and monitor grazing-related changes afield. We quantified spatial and temporal variation in water quality in wetlands occupied by threatened Oregon spotted frog (Rana pretiosa) at Klamath Marsh National Wildlife Refuge in Oregon, United States (US). We used analyses for censored data to evaluate the importance of habitat type and grazing history in predicting concentrations of nutrients, turbidity, fecal indicator bacteria (FIB; total coliforms, Escherichia coli (E. coli), and enterococci), and estrogenicity, an indicator of estrogenic activity. Nutrients (orthophosphate and ammonia) and enterococci varied over time and space, while E. coli, total coliforms, turbidity, and estrogenicity were more strongly associated with local livestock grazing metrics. Turbidity was correlated with several grazing-related constituents and may be particularly useful for monitoring water quality in landscapes with livestock use. Concentrations of orthophosphate and estrogenicity were elevated at several sites relative to published health benchmarks, and their potential effects on Rana pretiosa warrant further investigation. Our data provided an initial assessment of potential exposure of amphibians to grazing-related constituents in western US wetlands. Increased monitoring of surface water quality and amphibian population status in combination with controlled laboratory toxicity studies could help inform future research and targeted management strategies for wetlands with both grazing and amphibians of conservation concern.


Water Quality , Wetlands , Amphibians , Animals , Ecosystem , Environmental Monitoring , Escherichia coli , Livestock , Oregon
3.
Sci Rep ; 10(1): 13012, 2020 08 03.
Article En | MEDLINE | ID: mdl-32747670

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.


Amphibians/microbiology , Batrachochytrium/isolation & purification , Amphibians/classification , Animals , Batrachochytrium/genetics , Bayes Theorem , DNA, Fungal/genetics , North America , Polymerase Chain Reaction , Species Specificity
4.
PLoS One ; 10(8): e0135135, 2015.
Article En | MEDLINE | ID: mdl-26308521

While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.


Aquatic Organisms/classification , Biodiversity , Conservation of Natural Resources , Geography
5.
PLoS One ; 10(7): e0133301, 2015.
Article En | MEDLINE | ID: mdl-26200354

With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other environmental perturbations, our work highlights the need for scientists and conservation managers to consider both spatial and temporal dynamics when designating biodiversity hotspots.


Aquatic Organisms/physiology , Biodiversity , Fishes/physiology , Animals , Pacific Ocean , United States
...